Suppr超能文献

通过半理性设计工程化漆酶 CueO 以改善生物电化学中的电子转移。

Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semi-Rational Design.

机构信息

Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.

DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany.

出版信息

Chemistry. 2020 Apr 16;26(22):4974-4979. doi: 10.1002/chem.201905598. Epub 2020 Mar 18.

Abstract

Copper efflux oxidase (CueO) from Escherichia coli is a special bacterial laccase due to its fifth copper binding site. Herein, it is discovered that the fifth Cu occupancy plays a crucial and favorable role of electron relay in bioelectrocatalytic oxygen reduction. By substituting the residues at the four coordinated positions of the fifth Cu, 11 beneficial variants are identified with ≥2.5-fold increased currents at -250 mV (up to 6.13 mA cm ). Detailed electrocatalytic characterization suggests the microenvironment of the fifth Cu binding site governs the electrocatalytic current of CueO. Additionally, further electron transfer analysis assisted by molecular dynamics (MD) simulation demonstrates that an increase in localized structural stability and a decrease of distance between the fifth Cu and the T1 Cu are two main factors contributing to the improved kinetics of CueO variants. It may guide a novel way to tailor laccases and perhaps other oxidoreductases for bioelectrocatalytic applications.

摘要

铜外排氧化酶(CueO)来自大肠杆菌,由于其第五个铜结合位点,它是一种特殊的细菌漆酶。本文发现,第五个 Cu 占据对生物电化学氧还原中的电子传递起着至关重要和有利的作用。通过取代第五个 Cu 的四个配位位置的残基,鉴定出 11 种有益的变体,在-250 mV 时电流增加了≥2.5 倍(高达 6.13 mA·cm)。详细的电催化特性表明,第五个 Cu 结合位点的微环境控制着 CueO 的电催化电流。此外,借助分子动力学(MD)模拟进行的进一步电子转移分析表明,局部结构稳定性的提高和第五个 Cu 与 T1 Cu 之间距离的缩短是导致 CueO 变体动力学改善的两个主要因素。它可能为针对生物电化学应用的漆酶和其他氧化还原酶的定制提供一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a00f/7186830/4eeb8a8187b2/CHEM-26-4974-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验