Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720.
Energy & Biosciences Institute, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2020024118.
Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (') of -650 mV for the PO/PO couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the , , , , , and Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.
亚磷酸盐是目前已知的最具能量优势的化能营养电子供体,其 PO/PO 偶联的半电池电位 (')为-650 mV。自 2000 年发现微生物异化亚磷酸盐氧化(DPO)以来,DPO 微生物(DPOM)的环境分布、进化和多样性仍然是个谜,因为只鉴定出了两个种。在这里,通过对富含亚磷酸盐的微生物群落进行宏基因组测序,实现了对 21 种额外 DPOM 的基因组重建和代谢特征分析。这些 DPOM 跨越了细菌的六个类群,包括 、 、 、 、 和 。将富集生物体的 DPO 基因与超过 17000 个公开可用的宏基因组进行比较,揭示了这种代谢在各种缺氧环境中的全球存在,包括废水、沉积物和地下含水层。尽管 DPOM 的新发现具有环境和分类多样性,但宏基因组分析表明,典型的 DPOM 是一种化能自养生物,它占据低氧环境,并专门从事亚磷酸盐氧化与 CO 还原偶联。系统发育分析表明,DPO 基因形成一个高度保守的簇,可能具有古老的起源,可以追溯到单细菌和双细菌的分裂之前。通过将微生物培养策略与宏基因组学相结合,这些研究突出了微生物群落中潜在的未被采样的代谢多功能性。我们揭示了一种独特代谢的意外普遍性、多样性、生化特异性和古老起源,这种代谢是地球上主要营养元素磷的氧化还原循环的核心。