Suppr超能文献

基于机器学习利用氧代谢和新生血管生成的生理代谢磁共振成像预测胶质瘤基因突变状态(一项双中心研究)

Machine Learning-Based Prediction of Glioma Gene Mutation Status Using Physio-Metabolic MRI of Oxygen Metabolism and Neovascularization (A Bicenter Study).

作者信息

Stadlbauer Andreas, Nikolic Katarina, Oberndorfer Stefan, Marhold Franz, Kinfe Thomas M, Meyer-Bäse Anke, Bistrian Diana Alina, Schnell Oliver, Doerfler Arnd

机构信息

Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.

Institute of Medical Radiology, Diagnostics, Intervention, University Hospital St. Pölten, 3100 St. Pölten, Austria.

出版信息

Cancers (Basel). 2024 Mar 8;16(6):1102. doi: 10.3390/cancers16061102.

Abstract

The mutational status of the isocitrate dehydrogenase () gene plays a key role in the treatment of glioma patients because it is known to affect energy metabolism pathways relevant to glioma. Physio-metabolic magnetic resonance imaging (MRI) enables the non-invasive analysis of oxygen metabolism and tissue hypoxia as well as associated neovascularization and microvascular architecture. However, evaluating such complex neuroimaging data requires computational support. Traditional machine learning algorithms and simple deep learning models were trained with radiomic features from clinical MRI (cMRI) or physio-metabolic MRI data. A total of 215 patients (first center: 166 participants + 16 participants for independent internal testing of the algorithms versus second site: 33 participants for independent external testing) were enrolled using two different physio-metabolic MRI protocols. The algorithms trained with physio-metabolic data demonstrated the best classification performance in independent internal testing: precision, 91.7%; accuracy, 87.5%; area under the receiver operating curve (AUROC), 0.979. In external testing, traditional machine learning models trained with cMRI data exhibited the best classification results: precision, 84.9%; accuracy, 81.8%; and AUROC, 0.879. The poor performance for the physio-metabolic MRI approach appears to be explainable by site-dependent differences in data acquisition methodologies. The physio-metabolic MRI approach potentially supports reliable classification of gene status in the presurgical stage of glioma patients. However, non-standardized protocols limit the level of evidence and underlie the need for a reproducible framework of data acquisition techniques.

摘要

异柠檬酸脱氢酶()基因的突变状态在胶质瘤患者的治疗中起着关键作用,因为已知它会影响与胶质瘤相关的能量代谢途径。生理代谢磁共振成像(MRI)能够对氧代谢、组织缺氧以及相关的新生血管形成和微血管结构进行无创分析。然而,评估如此复杂的神经影像数据需要计算支持。传统机器学习算法和简单深度学习模型使用临床MRI(cMRI)或生理代谢MRI数据的影像组学特征进行训练。采用两种不同的生理代谢MRI方案共纳入了215例患者(第一个中心:166名参与者 + 16名参与者用于算法的独立内部测试,而第二个地点:33名参与者用于独立外部测试)。使用生理代谢数据训练的算法在独立内部测试中表现出最佳分类性能:精确率为91.7%;准确率为87.5%;受试者操作特征曲线下面积(AUROC)为0.979。在外部测试中,使用cMRI数据训练的传统机器学习模型表现出最佳分类结果:精确率为84.9%;准确率为81.8%;AUROC为0.879。生理代谢MRI方法表现不佳似乎可以通过数据采集方法中与地点相关的差异来解释。生理代谢MRI方法有可能支持在胶质瘤患者手术前阶段对基因状态进行可靠分类。然而,非标准化方案限制了证据水平,这也是需要一个可重复的数据采集技术框架的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7f/10969299/25f0857a18d7/cancers-16-01102-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验