Suppr超能文献

生物神经网络与人工神经网络中的结构困境。

The structure dilemma in biological and artificial neural networks.

作者信息

Pircher Thomas, Pircher Bianca, Schlücker Eberhard, Feigenspan Andreas

机构信息

Institute of Process Machinery and Systems Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstraße 4, 91058, Erlangen, Germany.

Department Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstraße 5, 91058, Erlangen, Germany.

出版信息

Sci Rep. 2021 Mar 10;11(1):5621. doi: 10.1038/s41598-021-84813-6.

Abstract

Brain research up to date has revealed that structure and function are highly related. Thus, for example, studies have repeatedly shown that the brains of patients suffering from schizophrenia or other diseases have a different connectome compared to healthy people. Apart from stochastic processes, however, an inherent logic describing how neurons connect to each other has not yet been identified. We revisited this structural dilemma by comparing and analyzing artificial and biological-based neural networks. Namely, we used feed-forward and recurrent artificial neural networks as well as networks based on the structure of the micro-connectome of C. elegans and of the human macro-connectome. We trained these diverse networks, which markedly differ in their architecture, initialization and pruning technique, and we found remarkable parallels between biological-based and artificial neural networks, as we were additionally able to show that the dilemma is also present in artificial neural networks. Our findings show that structure contains all the information, but that this structure is not exclusive. Indeed, the same structure was able to solve completely different problems with only minimal adjustments. We particularly put interest on the influence of weights and the neuron offset value, as they show a different adaption behaviour. Our findings open up new questions in the fields of artificial and biological information processing research.

摘要

最新的大脑研究表明,结构与功能高度相关。例如,研究反复表明,与健康人相比,精神分裂症或其他疾病患者的大脑具有不同的连接组。然而,除了随机过程外,尚未发现描述神经元如何相互连接的内在逻辑。我们通过比较和分析基于人工和生物的神经网络来重新审视这一结构困境。具体而言,我们使用了前馈和递归人工神经网络,以及基于秀丽隐杆线虫微连接组和人类大脑宏观连接组结构的网络。我们训练了这些架构、初始化和修剪技术明显不同的多样网络,并且发现基于生物的神经网络和人工神经网络之间存在显著的相似之处,因为我们还能够证明这种困境在人工神经网络中也存在。我们的研究结果表明,结构包含所有信息,但这种结构并非唯一的。事实上,相同的结构只需进行最小程度的调整就能解决完全不同的问题。我们特别关注权重和神经元偏移值的影响,因为它们表现出不同的适应行为。我们的研究结果在人工和生物信息处理研究领域提出了新的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验