Ramanan Nandini, Natarajan Sriraam
Computer Science Department, University of Texas at Dallas, Dallas, TX, United States.
Front Big Data. 2020 Oct 7;3:535976. doi: 10.3389/fdata.2020.535976. eCollection 2020.
We consider the problem of learning structured causal models from observational data. In this work, we use causal Bayesian networks to represent causal relationships among model variables. To this effect, we explore the use of two types of independencies-context-specific independence (CSI) and mutual independence (MI). We use CSI to identify the candidate set of causal relationships and then use MI to quantify their strengths and construct a causal model. We validate the learned models on benchmark networks and demonstrate the effectiveness when compared to some of the state-of-the-art Causal Bayesian Network Learning algorithms from observational Data.
我们考虑从观测数据中学习结构化因果模型的问题。在这项工作中,我们使用因果贝叶斯网络来表示模型变量之间的因果关系。为此,我们探索使用两种类型的独立性——上下文特定独立性(CSI)和相互独立性(MI)。我们使用CSI来识别因果关系的候选集,然后使用MI来量化它们的强度并构建一个因果模型。我们在基准网络上验证所学模型,并与一些从观测数据中学习因果贝叶斯网络的最新算法相比,证明其有效性。