Suppr超能文献

用于基于安全机器学习的人工晶状体预测的贝叶斯加法回归树公式。

The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions.

作者信息

Clarke Gerald P, Kapelner Adam

机构信息

OptiVision EyeCare, Oshkosh, WI, United States.

Department of Mathematics, Queens College, CUNY, Queens, New York, NY, United States.

出版信息

Front Big Data. 2020 Dec 18;3:572134. doi: 10.3389/fdata.2020.572134. eCollection 2020.

Abstract

Our work introduces a highly accurate, safe, and sufficiently explicable machine-learning (artificial intelligence) model of intraocular lens power (IOL) translating into better post-surgical outcomes for patients with cataracts. We also demonstrate its improved predictive accuracy over previous formulas. We collected retrospective eye measurement data on 5,331 eyes from 3,276 patients across multiple centers who received a lens implantation during cataract surgery. The dependent measure is the post-operative manifest spherical equivalent error from intended and the independent variables are the patient- and eye-specific characteristics. This dataset was split so that one subset was for formula construction and the other for validating our new formula. Data excluded fellow eyes, so as not to confound the prediction with bilateral eyes. Our formula is three times more precise than reported studies with a median absolute IOL error of 0.204 diopters (D). When converted to absolute predictive refraction errors on the cornea, the median error is 0.137 D which is close to the IOL manufacturer tolerance. These estimates are validated out-of-sample and thus are expected to reflect the future performance of our prediction formula, especially since our data were collected from a wide variety of patients, clinics, and manufacturers. The increased precision of IOL power calculations has the potential to optimize patient positive refractive outcomes. Our model also provides uncertainty plots that can be used in tandem with the clinician's expertise and previous formula output, further enhancing the safety. Our new machine learning process has the potential to significantly improve patient IOL refractive outcomes safely.

摘要

我们的研究成果引入了一种高度精确、安全且具有充分可解释性的人工晶状体(IOL)度数机器学习(人工智能)模型,该模型能够为白内障患者带来更好的术后效果。我们还证明了其预测准确性优于以往的公式。我们收集了来自多个中心的3276例接受白内障手术晶状体植入的患者的5331只眼睛的回顾性眼部测量数据。因变量是术后实际球镜等效误差与预期值的差值,自变量是患者和眼睛的特定特征。该数据集被划分为两部分,一部分用于公式构建,另一部分用于验证我们的新公式。数据排除了对侧眼,以免双眼预测相互混淆。我们的公式精度比已报道的研究高出三倍,绝对人工晶状体误差中位数为0.204屈光度(D)。转换为角膜上的绝对预测屈光误差后,中位数误差为0.137 D,接近人工晶状体制造商的公差范围。这些估计值经过了样本外验证,因此有望反映我们预测公式的未来性能,特别是因为我们的数据来自各种各样的患者、诊所和制造商。人工晶状体度数计算精度的提高有可能优化患者的正性屈光结果。我们的模型还提供了不确定性图,可与临床医生的专业知识和以往公式的输出结果结合使用,进一步提高安全性。我们新的机器学习方法有潜力安全地显著改善患者人工晶状体的屈光效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b59c/7931896/e4fce6d6eeda/fdata-03-572134-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验