Suppr超能文献

评估 Nallasamy 公式:一种用于白内障手术中屈光预测的堆叠集成机器学习方法。

Evaluation of the Nallasamy formula: a stacking ensemble machine learning method for refraction prediction in cataract surgery.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Br J Ophthalmol. 2023 Aug;107(8):1066-1071. doi: 10.1136/bjophthalmol-2021-320599. Epub 2022 Apr 4.

Abstract

AIMS

To develop a new intraocular lens power selection method with improved accuracy for general cataract patients receiving Alcon SN60WF lenses.

METHODS AND ANALYSIS

A total of 5016 patients (6893 eyes) who underwent cataract surgery at University of Michigan's Kellogg Eye Center and received the Alcon SN60WF lens were included in the study. A machine learning-based method was developed using a training dataset of 4013 patients (5890 eyes), and evaluated on a testing dataset of 1003 patients (1003 eyes). The performance of our method was compared with that of Barrett Universal II, Emmetropia Verifying Optical (EVO), Haigis, Hoffer Q, Holladay 1, PearlDGS and SRK/T.

RESULTS

Mean absolute error (MAE) of the Nallasamy formula in the testing dataset was 0.312 Dioptres and the median absolute error (MedAE) was 0.242 D. Performance of existing methods were as follows: Barrett Universal II MAE=0.328 D, MedAE=0.256 D; EVO MAE=0.322 D, MedAE=0.251 D; Haigis MAE=0.363 D, MedAE=0.289 D; Hoffer Q MAE=0.404 D, MedAE=0.331 D; Holladay 1 MAE=0.371 D, MedAE=0.298 D; PearlDGS MAE=0.329 D, MedAE=0.258 D; SRK/T MAE=0.376 D, MedAE=0.300 D. The Nallasamy formula performed significantly better than seven existing methods based on the paired Wilcoxon test with Bonferroni correction (p<0.05).

CONCLUSIONS

The Nallasamy formula (available at https://lenscalc.com/) outperformed the seven other formulas studied on overall MAE, MedAE, and percentage of eyes within 0.5 D of prediction. Clinical significance may be primarily at the population level.

摘要

目的

为接受 Alcon SN60WF 人工晶状体的一般白内障患者开发一种新的眼内晶状体屈光力选择方法,以提高准确性。

方法和分析

共纳入在密歇根大学凯洛格眼科中心接受白内障手术并植入 Alcon SN60WF 人工晶状体的 5016 例患者(6893 只眼)。使用包含 4013 例患者(5890 只眼)的训练数据集开发了一种基于机器学习的方法,并在包含 1003 例患者(1003 只眼)的测试数据集上进行了评估。将我们的方法与 Barrett Universal II、Emmetropia Verifying Optical (EVO)、Haigis、Hoffer Q、Holladay 1、PearlDGS 和 SRK/T 进行了比较。

结果

测试数据集中 Nallasamy 公式的平均绝对误差(MAE)为 0.312 屈光度,中位数绝对误差(MedAE)为 0.242 D。现有方法的性能如下:Barrett Universal II MAE=0.328 D,MedAE=0.256 D;EVO MAE=0.322 D,MedAE=0.251 D;Haigis MAE=0.363 D,MedAE=0.289 D;Hoffer Q MAE=0.404 D,MedAE=0.331 D;Holladay 1 MAE=0.371 D,MedAE=0.298 D;PearlDGS MAE=0.329 D,MedAE=0.258 D;SRK/T MAE=0.376 D,MedAE=0.300 D。基于配对 Wilcoxon 检验和 Bonferroni 校正,Nallasamy 公式在总体 MAE、MedAE 和预测值在 0.5 D 以内的眼数方面显著优于七种现有方法(p<0.05)。

结论

Nallasamy 公式(可在 https://lenscalc.com/ 上获得)在总体 MAE、MedAE 和预测值在 0.5 D 以内的眼数方面优于其他七种公式。临床意义可能主要在人群水平上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/10359549/1b7052a4495f/bjophthalmol-2021-320599f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验