Suppr超能文献

主动推理与眼球运动解剖学。

Active inference and the anatomy of oculomotion.

机构信息

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.

出版信息

Neuropsychologia. 2018 Mar;111:334-343. doi: 10.1016/j.neuropsychologia.2018.01.041. Epub 2018 Jan 31.

Abstract

Given that eye movement control can be framed as an inferential process, how are the requisite forces generated to produce anticipated or desired fixation? Starting from a generative model based on simple Newtonian equations of motion, we derive a variational solution to this problem and illustrate the plausibility of its implementation in the oculomotor brainstem. We show, through simulation, that the Bayesian filtering equations that implement 'planning as inference' can generate both saccadic and smooth pursuit eye movements. Crucially, the associated message passing maps well onto the known connectivity and neuroanatomy of the brainstem - and the changes in these messages over time are strikingly similar to single unit recordings of neurons in the corresponding nuclei. Furthermore, we show that simulated lesions to axonal pathways reproduce eye movement patterns of neurological patients with damage to these tracts.

摘要

鉴于眼球运动控制可以被框定为一种推理过程,那么如何产生必要的力量来产生预期或期望的注视呢?从基于简单牛顿运动方程的生成模型出发,我们推导出了这个问题的变分解,并说明了其在眼动脑干中的实施的合理性。我们通过模拟表明,实现“规划即推理”的贝叶斯滤波方程可以产生扫视和平滑追踪眼球运动。至关重要的是,相关的消息传递很好地映射到脑干的已知连接和神经解剖结构上——并且这些消息随时间的变化与相应核团中神经元的单细胞记录非常相似。此外,我们还表明,模拟的轴突通路损伤可以再现这些轨迹受损的神经科患者的眼球运动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd7/5884328/8de3ae174a72/gr1.jpg

相似文献

1
Active inference and the anatomy of oculomotion.
Neuropsychologia. 2018 Mar;111:334-343. doi: 10.1016/j.neuropsychologia.2018.01.041. Epub 2018 Jan 31.
2
Anatomical substrates of oculomotor control.
Curr Opin Neurobiol. 1997 Dec;7(6):872-9. doi: 10.1016/s0959-4388(97)80149-3.
3
Brainstem pathways for horizontal eye movement: pathologic correlation with MR imaging.
Radiographics. 2013 Jan-Feb;33(1):47-59. doi: 10.1148/rg.331125033.
4
Dynamics of saccadic oscillations.
Prog Brain Res. 2008;171:131-6. doi: 10.1016/S0079-6123(08)00617-1.
5
[Eye movement: from basic semiology to cognitive neuroscience].
Bull Acad Natl Med. 2005 Oct;189(7):1505-15; discussion 1515-7.
6
Pearls & Oy-sters: The medial longitudinal fasciculus in ocular motor physiology.
Neurology. 2008 Apr 22;70(17):e57-67. doi: 10.1212/01.wnl.0000310640.37810.b3.
7
[Central oculomotor circuits].
Rev Neurol (Paris). 1985;141(5):349-70.
8
Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons.
Exp Brain Res. 2005 Jan;160(1):89-106. doi: 10.1007/s00221-004-1989-8.
9
Ocular motor systems. Part 2: Nuclear and supranuclear systems.
J Neuroophthalmol. 1995 Sep;15(3):191-201.
10
Brainstem control of saccadic eye movements.
Annu Rev Neurosci. 1985;8:307-37. doi: 10.1146/annurev.ne.08.030185.001515.

引用本文的文献

1
Deep Hybrid Models: Infer and Plan in a Dynamic World.
Entropy (Basel). 2025 May 27;27(6):570. doi: 10.3390/e27060570.
3
Active Vision in Binocular Depth Estimation: A Top-Down Perspective.
Biomimetics (Basel). 2023 Sep 21;8(5):445. doi: 10.3390/biomimetics8050445.
4
Time-consciousness in computational phenomenology: a temporal analysis of active inference.
Neurosci Conscious. 2023 Mar 17;2023(1):niad004. doi: 10.1093/nc/niad004. eCollection 2023.
5
Structure learning enhances concept formation in synthetic Active Inference agents.
PLoS One. 2022 Nov 14;17(11):e0277199. doi: 10.1371/journal.pone.0277199. eCollection 2022.
6
Mastering uncertainty: A predictive processing account of enjoying uncertain success in video game play.
Front Psychol. 2022 Jul 26;13:924953. doi: 10.3389/fpsyg.2022.924953. eCollection 2022.
7
Implementing New Technologies to Improve Visual-Spatial Functions in Patients with Impaired Consciousness.
Int J Environ Res Public Health. 2022 Mar 5;19(5):3081. doi: 10.3390/ijerph19053081.
8
The Free Energy Principle for Perception and Action: A Deep Learning Perspective.
Entropy (Basel). 2022 Feb 21;24(2):301. doi: 10.3390/e24020301.

本文引用的文献

1
The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective.
Synthese. 2018;195(6):2417-2444. doi: 10.1007/s11229-016-1239-1. Epub 2016 Oct 21.
2
The graphical brain: Belief propagation and active inference.
Netw Neurosci. 2017;1(4):381-414. doi: 10.1162/NETN_a_00018. Epub 2017 Dec 31.
3
The Computational Anatomy of Visual Neglect.
Cereb Cortex. 2018 Feb 1;28(2):777-790. doi: 10.1093/cercor/bhx316.
4
The active construction of the visual world.
Neuropsychologia. 2017 Sep;104:92-101. doi: 10.1016/j.neuropsychologia.2017.08.003. Epub 2017 Aug 3.
5
Deep temporal models and active inference.
Neurosci Biobehav Rev. 2017 Jun;77:388-402. doi: 10.1016/j.neubiorev.2017.04.009. Epub 2017 Apr 14.
6
Neural Elements for Predictive Coding.
Front Psychol. 2016 Nov 18;7:1792. doi: 10.3389/fpsyg.2016.01792. eCollection 2016.
7
Scene Construction, Visual Foraging, and Active Inference.
Front Comput Neurosci. 2016 Jun 14;10:56. doi: 10.3389/fncom.2016.00056. eCollection 2016.
8
Active inference, eye movements and oculomotor delays.
Biol Cybern. 2014 Dec;108(6):777-801. doi: 10.1007/s00422-014-0620-8. Epub 2014 Aug 16.
9
Fixational eye movements during viewing of dynamic natural scenes.
Front Psychol. 2013 Oct 29;4:797. doi: 10.3389/fpsyg.2013.00797. eCollection 2013.
10
Eye movements in patients with neurodegenerative disorders.
Nat Rev Neurol. 2013 Feb;9(2):74-85. doi: 10.1038/nrneurol.2012.273. Epub 2013 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验