Suppr超能文献

基于深度树训练的 CNN 两阶段选择性集成用于医学图像分类。

Two-Stage Selective Ensemble of CNN via Deep Tree Training for Medical Image Classification.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):9194-9207. doi: 10.1109/TCYB.2021.3061147. Epub 2022 Aug 18.

Abstract

Medical image classification is an important task in computer-aided diagnosis systems. Its performance is critically determined by the descriptiveness and discriminative power of features extracted from images. With rapid development of deep learning, deep convolutional neural networks (CNNs) have been widely used to learn the optimal high-level features from the raw pixels of images for a given classification task. However, due to the limited amount of labeled medical images with certain quality distortions, such techniques crucially suffer from the training difficulties, including overfitting, local optimums, and vanishing gradients. To solve these problems, in this article, we propose a two-stage selective ensemble of CNN branches via a novel training strategy called deep tree training (DTT). In our approach, DTT is adopted to jointly train a series of networks constructed from the hidden layers of CNN in a hierarchical manner, leading to the advantage that vanishing gradients can be mitigated by supplementing gradients for hidden layers of CNN, and intrinsically obtain the base classifiers on the middle-level features with minimum computation burden for an ensemble solution. Moreover, the CNN branches as base learners are combined into the optimal classifier via the proposed two-stage selective ensemble approach based on both accuracy and diversity criteria. Extensive experiments on CIFAR-10 benchmark and two specific medical image datasets illustrate that our approach achieves better performance in terms of accuracy, sensitivity, specificity, and F1 score measurement.

摘要

医学图像分类是计算机辅助诊断系统中的一项重要任务。其性能主要取决于从图像中提取的特征的描述能力和判别能力。随着深度学习的快速发展,深度卷积神经网络(CNN)已被广泛用于从图像的原始像素中学习给定分类任务的最佳高级特征。然而,由于具有一定质量失真的医学图像的标签数量有限,因此这些技术在训练过程中存在严重的困难,包括过拟合、局部最优和梯度消失。为了解决这些问题,在本文中,我们通过一种称为深度树训练(DTT)的新训练策略,提出了一种通过新颖的训练策略来联合多个 CNN 分支的两阶段选择性集成方法。在我们的方法中,DTT 被采用来分层地联合训练一系列由 CNN 的隐藏层构建的网络,这使得通过为 CNN 的隐藏层补充梯度来减轻梯度消失的影响,并内在地在计算负担最小的情况下获得具有最小计算负担的中间层特征的基本分类器作为集成解决方案。此外,通过基于准确性和多样性标准的提出的两阶段选择性集成方法,将作为基本学习器的 CNN 分支组合成最佳分类器。在 CIFAR-10 基准数据集和两个特定的医学图像数据集上进行的广泛实验表明,我们的方法在准确性、灵敏度、特异性和 F1 得分测量方面都取得了更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验