School of SoftwareYunnan University Kunming 650106 China.
School of Information Science and EngineeringYunnan University Kunming 650106 China.
IEEE J Transl Eng Health Med. 2022 Mar 3;10:4300108. doi: 10.1109/JTEHM.2022.3156851. eCollection 2022.
At present, radical total mesorectal excision after neoadjuvant chemoradiotherapy is crucial for locally advanced rectal cancer. Therefore, the use of histopathological images analysis technology to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer is of great significance for the subsequent treatment of patients.
In this study, we propose a new pathological images analysis method based on multi-instance learning to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer. Specifically, we proposed a gated attention normalization mechanism based on the multilayer perceptron, which accelerates the convergence of stochastic gradient descent optimization and can speed up the training process. We also proposed a bilinear attention multi-scale feature fusion mechanism, which organically fuses the global features of the larger receptive fields and the detailed features of the smaller receptive fields and alleviates the problem of pathological images context information loss caused by block sampling. At the same time, we also designed a weighted loss function to alleviate the problem of imbalance between cancerous instances and normal instances.
We evaluated our method on a locally advanced rectal cancer dataset containing 150 whole slide images. In addition, to verify our method's generalization performance, we also tested on two publicly available datasets, Camelyon16 and MSKCC. The results show that the AUC values of our method on the Camelyon16 and MSKCC datasets reach 0.9337 and 0.9091, respectively.
Our method has outstanding performance and advantages in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer. -This study aims to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer to assist clinicians quickly diagnose and formulate personalized treatment plans for patients.
目前,新辅助放化疗后局部进展期直肠癌的全直肠系膜切除术至关重要。因此,利用组织病理学图像分析技术预测直肠癌新辅助放化疗的疗效,对患者的后续治疗具有重要意义。
本研究提出了一种新的基于多实例学习的病理图像分析方法,用于预测直肠癌新辅助放化疗的疗效。具体来说,我们提出了一种基于多层感知机的门控注意力归一化机制,加速随机梯度下降优化的收敛,能够加快训练过程。我们还提出了一种双线性注意力多尺度特征融合机制,有机地融合了更大感受野的全局特征和更小感受野的详细特征,缓解了块采样导致的病理图像上下文信息丢失问题。同时,我们还设计了加权损失函数,以缓解癌性实例与正常实例之间的不平衡问题。
我们在包含 150 张全切片图像的局部进展期直肠癌数据集上评估了我们的方法。此外,为了验证我们方法的泛化性能,我们还在两个公开可用的数据集 Camelyon16 和 MSKCC 上进行了测试。结果表明,我们的方法在 Camelyon16 和 MSKCC 数据集上的 AUC 值分别达到 0.9337 和 0.9091。
我们的方法在预测直肠癌新辅助放化疗疗效方面具有出色的性能和优势。