Suppr超能文献

通道视紫红质 C1C2:中央门附近的光循环动力学和相互作用。

Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate.

机构信息

Department of Chemistry, University of New Orleans, New Orleans, Louisiana.

Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.

出版信息

Biophys J. 2021 May 4;120(9):1835-1845. doi: 10.1016/j.bpj.2021.03.002. Epub 2021 Mar 9.

Abstract

Channelrhodopsins (ChR) are light-sensitive cation channels used in optogenetics, a technique that applies light to control cells (e.g., neurons) that have been modified genetically to express those channels. Although mutations are known to affect pore kinetics, little is known about how mutations induce changes at the molecular scale. To address this issue, we first measured channel opening and closing rates of a ChR chimera (C1C2) and selected variants (N297D, N297V, and V125L). Then, we used atomistic simulations to correlate those rates with changes in pore structure, hydration, and chemical interactions among key gating residues of C1C2 in both closed and open states. Overall, the experimental results show that C1C2 and its mutants do not behave like ChR2 or its analogous variants, except V125L, making C1C2 a unique channel. Our atomistic simulations confirmed that opening of the channel and initial hydration of the gating regions between helices I, II, III, and VII of the channel occurs with 1) the presence of 13-cis retinal; 2) deprotonation of a glutamic acid gating residue, E129; and 3) subsequent weakening of the central gate hydrogen bond between the same glutamic acid E129 and asparagine N297 in the central region of the pore. Also, an aspartate (D292) is the unambiguous primary proton acceptor for the retinal Schiff base in the hydrated channel.

摘要

通道视紫红质(ChR)是光遗传学中使用的光敏感阳离子通道,该技术应用光来控制经过基因修饰以表达这些通道的细胞(例如神经元)。尽管已知突变会影响孔动力学,但对于突变如何在分子尺度上引起变化知之甚少。为了解决这个问题,我们首先测量了 ChR 嵌合体(C1C2)和选定变体(N297D、N297V 和 V125L)的通道开启和关闭速率。然后,我们使用原子模拟将这些速率与通道在关闭和打开状态下的孔结构、水合作用以及关键门控残基之间的化学相互作用的变化相关联。总体而言,实验结果表明,C1C2 及其突变体的行为与 ChR2 或其类似变体不同,除了 V125L,这使得 C1C2 成为一种独特的通道。我们的原子模拟证实,通道的打开和通道中 I、II、III 和 VII 螺旋之间的门控区域的初始水合作用发生在以下情况下:1)存在 13-顺式视黄醛;2)门控残基谷氨酸 E129 的去质子化;以及 3)随后在通道中心区域中相同谷氨酸 E129 和天冬酰胺 N297 之间的中央门控氢键变弱。此外,天冬氨酸(D292)是水合通道中视黄醛席夫碱的明确的原始质子受体。

相似文献

3
Retinal isomerization and water-pore formation in channelrhodopsin-2.视紫红质-2 的视网膜异构化和水孔形成。
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3557-3562. doi: 10.1073/pnas.1700091115. Epub 2018 Mar 19.

本文引用的文献

7
Retinal isomerization and water-pore formation in channelrhodopsin-2.视紫红质-2 的视网膜异构化和水孔形成。
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3557-3562. doi: 10.1073/pnas.1700091115. Epub 2018 Mar 19.
9
The form and function of channelrhodopsin.视紫红质通道蛋白的形式与功能。
Science. 2017 Sep 15;357(6356). doi: 10.1126/science.aan5544.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验