Suppr超能文献

提出一种基于机器学习的方法来预测分娩前和分娩期间的死产情况并对特征进行排序:全国性回顾性横断面研究。

Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: nationwide retrospective cross-sectional study.

作者信息

Khatibi Toktam, Hanifi Elham, Sepehri Mohammad Mehdi, Allahqoli Leila

机构信息

School of Industrial and Systems Engineering, Tarbiat Modares University (TMU), Tehran, 14117-13114, Iran.

Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.

出版信息

BMC Pregnancy Childbirth. 2021 Mar 12;21(1):202. doi: 10.1186/s12884-021-03658-z.

Abstract

BACKGROUND

Stillbirth is defined as fetal loss in pregnancy beyond 28 weeks by WHO. In this study, a machine-learning based method is proposed to predict stillbirth from livebirth and discriminate stillbirth before and during delivery and rank the features.

METHOD

A two-step stack ensemble classifier is proposed for classifying the instances into stillbirth and livebirth at the first step and then, classifying stillbirth before delivery from stillbirth during the labor at the second step. The proposed SE has two consecutive layers including the same classifiers. The base classifiers in each layer are decision tree, Gradient boosting classifier, logistics regression, random forest and support vector machines which are trained independently and aggregated based on Vote boosting method. Moreover, a new feature ranking method is proposed in this study based on mean decrease accuracy, Gini Index and model coefficients to find high-ranked features.

RESULTS

IMAN registry dataset is used in this study considering all births at or beyond 28th gestational week from 2016/04/01 to 2017/01/01 including 1,415,623 live birth and 5502 stillbirth cases. A combination of maternal demographic features, clinical history, fetal properties, delivery descriptors, environmental features, healthcare service provider descriptors and socio-demographic features are considered. The experimental results show that our proposed SE outperforms the compared classifiers with the average accuracy of 90%, sensitivity of 91%, specificity of 88%. The discrimination of the proposed SE is assessed and the average AUC of ±95%, CI of 90.51% ±1.08 and 90% ±1.12 is obtained on training dataset for model development and test dataset for external validation, respectively. The proposed SE is calibrated using isotopic nonparametric calibration method with the score of 0.07. The process is repeated 10,000 times and AUC of SE classifiers using random different training datasets as null distribution. The obtained p-value to assess the specificity of the proposed SE is 0.0126 which shows the significance of the proposed SE.

CONCLUSIONS

Gestational age and fetal height are two most important features for discriminating livebirth from stillbirth. Moreover, hospital, province, delivery main cause, perinatal abnormality, miscarriage number and maternal age are the most important features for classifying stillbirth before and during delivery.

摘要

背景

世界卫生组织将死产定义为妊娠28周后发生的胎儿死亡。在本研究中,提出了一种基于机器学习的方法,用于从活产中预测死产,并区分分娩前和分娩期间的死产情况,并对特征进行排序。

方法

提出了一种两步堆叠集成分类器,第一步将实例分类为死产和活产,第二步将分娩前的死产与分娩期间的死产进行分类。所提出的堆叠集成分类器有两个连续的层,包括相同的分类器。每层中的基分类器是决策树、梯度提升分类器、逻辑回归、随机森林和支持向量机,它们各自独立训练,并基于投票提升方法进行聚合。此外,本研究还基于平均精度下降、基尼指数和模型系数提出了一种新的特征排序方法,以找到排名靠前的特征。

结果

本研究使用了IMAN登记数据集,该数据集涵盖了2016年4月1日至2017年1月1日妊娠28周及以后的所有分娩情况,包括1415623例活产和5502例死产病例。考虑了产妇人口统计学特征、临床病史、胎儿特征、分娩描述、环境特征、医疗服务提供者描述和社会人口统计学特征的组合。实验结果表明,我们提出的堆叠集成分类器优于比较的分类器,平均准确率为90%,灵敏度为91%,特异性为88%。对所提出的堆叠集成分类器的区分能力进行了评估,在用于模型开发的训练数据集和用于外部验证 的测试数据集上,分别获得了平均AUC为±95%,置信区间为90.51%±1.08和90%±1.12。所提出的堆叠集成分类器使用同位素非参数校准方法进行校准,得分 为0.07。该过程重复10000次,并使用随机不同的训练数据集作为零分布来计算堆叠集成分类器的AUC。用于评估所提出的堆叠集成分类器特异性的p值为0.0126,这表明了所提出的堆叠集成分类器的显著性。

结论

孕周和胎儿身高是区分活产和死产的两个最重要特征。此外,医院、省份、分娩主要原因、围产期异常、流产次数和产妇年龄是分类分娩前和分娩期间死产的最重要特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7122/7953639/ffbc2fd098a0/12884_2021_3658_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验