Suppr超能文献

多组学和机器学习在女性生殖健康的预防和管理中的应用。

Multi-omics and machine learning for the prevention and management of female reproductive health.

机构信息

Department of Biochemistry, Postgraduate Institute of Medical Sciences, Rohtak, Haryana, India.

Computational Biology Unit (CBU), Department of Clinical Science, University of Bergen, Bergen, Norway.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 23;14:1081667. doi: 10.3389/fendo.2023.1081667. eCollection 2023.

Abstract

Females typically carry most of the burden of reproduction in mammals. In humans, this burden is exacerbated further, as the evolutionary advantage of a large and complex human brain came at a great cost of women's reproductive health. Pregnancy thus became a highly demanding phase in a woman's life cycle both physically and emotionally and therefore needs monitoring to assure an optimal outcome. Moreover, an increasing societal trend towards reproductive complications partly due to the increasing maternal age and global obesity pandemic demands closer monitoring of female reproductive health. This review first provides an overview of female reproductive biology and further explores utilization of large-scale data analysis and -omics techniques (genomics, transcriptomics, proteomics, and metabolomics) towards diagnosis, prognosis, and management of female reproductive disorders. In addition, we explore machine learning approaches for predictive models towards prevention and management. Furthermore, mobile apps and wearable devices provide a promise of continuous monitoring of health. These complementary technologies can be combined towards monitoring female (fertility-related) health and detection of any early complications to provide intervention solutions. In summary, technological advances (e.g., omics and wearables) have shown a promise towards diagnosis, prognosis, and management of female reproductive disorders. Systematic integration of these technologies is needed urgently in female reproductive healthcare to be further implemented in the national healthcare systems for societal benefit.

摘要

女性通常在哺乳动物的生殖过程中承担着大部分的负担。在人类中,这种负担进一步加重了,因为大脑的巨大和复杂性带来了进化优势,而这是以女性生殖健康为巨大代价换来的。因此,怀孕在生理和心理上成为了女性生命周期中一个非常高要求的阶段,需要进行监测以确保最佳结果。此外,由于越来越多的社会趋势导致生殖并发症,部分原因是产妇年龄的增加和全球肥胖症的流行,因此需要更密切地监测女性生殖健康。

本综述首先概述了女性生殖生物学,进一步探讨了利用大规模数据分析和组学技术(基因组学、转录组学、蛋白质组学和代谢组学)来诊断、预后和管理女性生殖障碍。此外,我们还探讨了机器学习方法在预测模型中的应用,以进行预防和管理。此外,移动应用程序和可穿戴设备为健康的连续监测提供了希望。这些互补技术可以结合起来监测女性(与生育相关)的健康状况,并检测任何早期并发症,以提供干预解决方案。

总之,技术进步(例如组学和可穿戴设备)在女性生殖障碍的诊断、预后和管理方面显示出了一定的前景。迫切需要将这些技术系统地整合到女性生殖保健中,以便进一步在国家医疗保健系统中实施,为社会带来益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4463/9996332/02d4d1f4b76c/fendo-14-1081667-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验