Suppr超能文献

存在竞争风险时受限平均时间损失的估计和建模。

Estimation and modeling of the restricted mean time lost in the presence of competing risks.

机构信息

Department of Biostatistics, Boston University, Boston, Massachusetts, USA.

出版信息

Stat Med. 2021 Apr;40(9):2177-2196. doi: 10.1002/sim.8896. Epub 2021 Feb 10.

Abstract

Survival data with competing or semi-competing risks are common in observational studies. As an alternative to cause-specific and subdistribution hazard ratios, the between-group difference in cause-specific restricted mean times lost (RMTL) gives the mean difference in life expectancy lost to a specific cause of death or in disease-free time lost, in the case of a nonfatal outcome, over a prespecified period. To adjust for covariates, we introduce an inverse probability weighted estimator and its variance for the marginal difference in RMTL. We also introduce an inverse probability of censoring weighted regression model for the RMTL. In simulation studies, we examined the finite sample performance of the proposed methods under proportional and nonproportional subdistribution hazards scenarios. We illustrated both methods with competing risks data from the Framingham Heart Study. We estimated sex differences in atrial fibrillation (AF)-free times lost over 40 years. We also estimated sex differences in mean lifetime lost to cardiovascular disease (CVD) and non-CVD death over 10 years among individuals with AF.

摘要

在观察性研究中,常存在竞争风险或半竞争风险的生存数据。作为针对特定原因和亚分布风险比的替代方法,组间特定原因受限平均损失时间(RMTL)差异给出了特定死亡原因或非致命性结局情况下无病时间损失的预期寿命差异,在特定时期内。为了调整协变量,我们引入了一种逆概率加权估计量及其方差,用于 RMTL 的边际差异。我们还引入了一种 RMTL 的逆概率删失加权回归模型。在模拟研究中,我们在比例和非比例亚分布风险情况下检查了所提出方法的有限样本性能。我们使用弗雷明汉心脏研究的竞争风险数据来说明这两种方法。我们估计了 40 年内无房颤(AF)时间损失的性别差异。我们还估计了在 10 年内,AF 患者中因心血管疾病(CVD)和非-CVD 死亡而导致的平均寿命损失的性别差异。

相似文献

引用本文的文献

本文引用的文献

7
Adjusted restricted mean survival times in observational studies.观察性研究中的调整受限平均生存时间。
Stat Med. 2019 Sep 10;38(20):3832-3860. doi: 10.1002/sim.8206. Epub 2019 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验