Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Nat Commun. 2021 Mar 11;12(1):1576. doi: 10.1038/s41467-021-21578-6.
We apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes.
我们应用寡聚文库和机器学习方法来描述噬菌体 MS2(MCP)、PP7(PCP)和 Qβ(QCP)的衣壳蛋白(CP)与 RNA 结合的序列和结构决定因素。我们使用寡聚文库为每个 CP 生成数千个候选结合位点,并使用高通量剂量反应分选-seq 测定法(iSort-seq)筛选结合。然后,我们应用神经网络来扩展这个结合位点空间,从而确定了每个 CP 结合的关键结构和序列特征。为了验证我们的模型和实验结果,我们设计了几个非重复的结合位点盒,并在哺乳动物细胞中验证了它们的功能。我们发现,每个 CP 与 RNA 的结合都有一个独特的序列和结构决定因素空间,这与之前低通量的发现相比,提供了对 CP-RNA 相互作用更完整的描述。最后,基于我们的结合空间,我们展示了一种计算工具,用于成功设计和快速合成功能性非重复结合位点盒。