Suppr超能文献

在活细胞中对单个 mRNA 分子进行长期成像。

Long-term imaging of individual mRNA molecules in living cells.

机构信息

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Cell Rep Methods. 2022 May 25;2(6):100226. doi: 10.1016/j.crmeth.2022.100226. eCollection 2022 Jun 20.

Abstract

Single-cell imaging of individual mRNAs has revealed core mechanisms of the central dogma. However, most approaches require cell fixation or have limited sensitivity for live-cell applications. Here, we describe SunRISER (SunTag-based reporter for imaging signal-enriched mRNA), a computationally and experimentally optimized approach for unambiguous detection of single mRNA molecules in living cells. When viewed by epifluorescence microscopy, SunRISER-labeled mRNAs show strong signal to background and resistance to photobleaching, which together enable long-term mRNA imaging studies. SunRISER variants, using 8× and 10× stem-loop arrays, demonstrate effective mRNA detection while significantly reducing alterations to target mRNA sequences. We characterize SunRISER to observe mRNA inheritance during mitosis and find that stressors enhance diversity among post-mitotic sister cells. Taken together, SunRISER enables a glimpse into living cells to observe aspects of the central dogma and the role of mRNAs in rare and dynamical trafficking events.

摘要

单细胞成像技术已经揭示了中心法则的核心机制。然而,大多数方法需要细胞固定,或者在活细胞应用中灵敏度有限。在这里,我们描述了 SunRISER(基于 SunTag 的报告分子,用于增强信号的 mRNA 成像),这是一种经过计算和实验优化的方法,可在活细胞中明确检测单个 mRNA 分子。通过荧光显微镜观察,SunRISER 标记的 mRNA 显示出强信号与背景的对比,并且抗光漂白,这两者共同实现了长期的 mRNA 成像研究。使用 8×和 10×茎环阵列的 SunRISER 变体,在显著减少对靶 mRNA 序列改变的同时,仍能有效地检测 mRNA。我们对 SunRISER 进行了特征描述,以观察有丝分裂过程中 mRNA 的遗传,并发现应激源增强了有丝分裂后姐妹细胞之间的多样性。总之,SunRISER 能够深入观察活细胞,观察中心法则的各个方面以及 mRNA 在稀有和动态运输事件中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28f2/9243547/52bd21aa3834/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验