Suppr超能文献

基于生物信息学的肠道病毒 A71 和柯萨奇病毒 A16 构象表位预测。

Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16.

机构信息

Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, China.

Department of Infection Control, Heze Municipal Hospital, Shandong, China.

出版信息

Sci Rep. 2021 Mar 11;11(1):5701. doi: 10.1038/s41598-021-84891-6.

Abstract

Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we employed a Bioinformatics-based algorithm to predict the conformational epitopes of EV-A71 and CV-A16 and compared with that of CV-A10. Prediction results revealed that the distribution patterns of conformational epitopes of EV-A71 and CV-A16 were similar to that of CV-A10 and their epitopes likewise consisted of three sites: site 1 (on the "north rim" of the canyon around the fivefold vertex), site 2 (on the "puff") and site 3 (one part was in the "knob" and the other was near the threefold vertex). The reported epitopes highly overlapped with our predicted epitopes indicating the predicted results were reliable. These data suggested that three-site distribution pattern may be the basic distribution role of epitopes on the enteroviruses capsids. Our prediction results of EV-A71 and CV-A16 can provide essential information for monitoring the antigenic evolution of enterovirus.

摘要

肠道病毒 A71(EV-A71)、柯萨奇病毒 A16(CV-A16)和 CV-A10 是手足口病(HFMD)的主要病原体。构象表位在监测抗原进化、预测优势株和制备疫苗方面起着至关重要的作用。在本研究中,我们采用基于生物信息学的算法预测了 EV-A71 和 CV-A16 的构象表位,并与 CV-A10 进行了比较。预测结果表明,EV-A71 和 CV-A16 的构象表位分布模式与 CV-A10 的相似,其表位同样由三个位点组成:位点 1(五重顶点周围峡谷的“北缘”)、位点 2(“凸起”)和位点 3(一部分在“旋钮”上,另一部分在三重顶点附近)。报道的表位与我们预测的表位高度重叠,表明预测结果可靠。这些数据表明,三位点分布模式可能是肠道病毒衣壳上表位的基本分布作用。我们对 EV-A71 和 CV-A16 的预测结果可为监测肠道病毒的抗原进化提供重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d98/7952546/0ef2fc0b4408/41598_2021_84891_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验