Suppr超能文献

通过稀疏组正则化在多模态成像中进行稳定的解剖结构检测:衰老大脑中铁积累的比较研究

Stable Anatomy Detection in Multimodal Imaging Through Sparse Group Regularization: A Comparative Study of Iron Accumulation in the Aging Brain.

作者信息

Pietrosanu Matthew, Zhang Li, Seres Peter, Elkady Ahmed, Wilman Alan H, Kong Linglong, Cobzas Dana

机构信息

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada.

Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

Front Hum Neurosci. 2021 Feb 23;15:641616. doi: 10.3389/fnhum.2021.641616. eCollection 2021.

Abstract

Multimodal neuroimaging provides a rich source of data for identifying brain regions associated with disease progression and aging. However, present studies still typically analyze modalities separately or aggregate voxel-wise measurements and analyses to the structural level, thus reducing statistical power. As a central example, previous works have used two quantitative MRI parameters-R2* and quantitative susceptibility (QS)-to study changes in iron associated with aging in healthy and multiple sclerosis subjects, but failed to simultaneously account for both. In this article, we propose a unified framework that combines information from multiple imaging modalities and regularizes estimates for increased interpretability, generalizability, and stability. Our work focuses on joint region detection problems where overlap between effect supports across modalities is encouraged but not strictly enforced. To achieve this, we combine (lasso), total variation (TV), and group lasso penalties. While the TV penalty encourages geometric regularization by controlling estimate variability and support boundary geometry, the group lasso penalty accounts for similarities in the support between imaging modalities. We address the computational difficulty in this regularization scheme with an alternating direction method of multipliers (ADMM) optimizer. In a neuroimaging application, we compare our method against independent sparse and joint sparse models using a dataset of R2* and QS maps derived from MRI scans of 113 healthy controls: our method produces clinically-interpretable regions where specific iron changes are associated with healthy aging. Together with results across multiple simulation studies, we conclude that our approach identifies regions that are more strongly associated with the variable of interest (e.g., age), more accurate, and more stable with respect to training data variability. This work makes progress toward a stable and interpretable multimodal imaging analysis framework for studying disease-related changes in brain structure and can be extended for classification and disease prediction tasks.

摘要

多模态神经成像为识别与疾病进展和衰老相关的脑区提供了丰富的数据来源。然而,目前的研究通常仍分别分析各模态,或将体素级测量和分析汇总到结构层面,从而降低了统计功效。一个核心例子是,先前的研究使用了两个定量MRI参数——R2和定量磁化率(QS)——来研究健康受试者和多发性硬化症患者中与衰老相关的铁含量变化,但未能同时考虑这两个参数。在本文中,我们提出了一个统一的框架,该框架结合了来自多种成像模态的信息,并对估计值进行正则化处理,以提高可解释性、通用性和稳定性。我们的工作聚焦于联合区域检测问题,其中鼓励但不严格要求跨模态效应支持之间的重叠。为实现这一目标,我们结合了套索(lasso)、总变差(TV)和组套索惩罚。虽然总变差惩罚通过控制估计变异性和支持边界几何形状来鼓励几何正则化,但组套索惩罚考虑了成像模态之间支持的相似性。我们使用乘子交替方向法(ADMM)优化器解决了这种正则化方案中的计算难题。在一项神经成像应用中,我们使用来自113名健康对照者MRI扫描的R2和QS图数据集,将我们的方法与独立稀疏模型和联合稀疏模型进行了比较:我们的方法产生了临床上可解释的区域,其中特定的铁含量变化与健康衰老相关。结合多项模拟研究的结果,我们得出结论,我们的方法识别出的区域与感兴趣的变量(如年龄)相关性更强、更准确,并且相对于训练数据变异性更稳定。这项工作朝着用于研究脑结构中与疾病相关变化的稳定且可解释的多模态成像分析框架迈进了一步,并且可以扩展用于分类和疾病预测任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c99/7940836/25d34e7ad027/fnhum-15-641616-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验