Suppr超能文献

基于循环神经网络 LSTM 的生命日志异常检测

LLAD: Life-Log Anomaly Detection Based on Recurrent Neural Network LSTM.

机构信息

Department of Computer Science and Engineering, Sun Moon University, Asan 31460, Republic of Korea.

Genome-based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea.

出版信息

J Healthc Eng. 2021 Feb 24;2021:8829403. doi: 10.1155/2021/8829403. eCollection 2021.

Abstract

Life-Log is a term used for the daily monitoring of health conditions and recognizing anomalies from data generated by sensor devices. The development of smart sensors enables collection of health data, which can be considered as a solution to risks associated with personal healthcare by raising awareness regarding health conditions and wellness. Therefore, Life-Log analysis methods are important for real-life monitoring and anomaly detection. This study proposes a method for the improvement and combination of previous methods and techniques in similar fields to detect anomalies in health log data generated by various sensors. Recurrent neural networks with long short-term memory units are used for analyzing the Life-Log data. The results indicate that the proposed model performs more effectively than conventional health data analysis methods, and the proposed approach can yield a satisfactory accuracy in anomaly detection.

摘要

生活日志是指通过传感器设备生成的数据来监测健康状况和识别异常的日常行为。智能传感器的发展使得健康数据的收集成为可能,这可以通过提高对健康状况和健康的认识来解决与个人医疗保健相关的风险。因此,生活日志分析方法对于实时监测和异常检测非常重要。本研究提出了一种改进和结合先前方法和技术的方法,用于检测各种传感器生成的健康日志数据中的异常。使用具有长短期记忆单元的递归神经网络来分析生活日志数据。结果表明,所提出的模型比传统的健康数据分析方法更有效,并且所提出的方法在异常检测中可以达到令人满意的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a4/7932773/f4bb7df11118/JHE2021-8829403.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验