Suppr超能文献

基于深度学习的低剂量计算机断层扫描肺叶自动分割

Automatic segmentation of pulmonary lobes on low-dose computed tomography using deep learning.

作者信息

Zhang Zewei, Ren Jialiang, Tao Xiuli, Tang Wei, Zhao Shijun, Zhou Lina, Huang Yao, Wang Jianwei, Wu Ning

机构信息

PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

GE Healthcare China, Beijing, China.

出版信息

Ann Transl Med. 2021 Feb;9(4):291. doi: 10.21037/atm-20-5060.

Abstract

BACKGROUND

To develop and validate a fully automated deep learning-based segmentation algorithm to segment pulmonary lobe on low-dose computed tomography (LDCT) images.

METHODS

This study presents an automatic segmentation of pulmonary lobes using a fully convolutional neural network named dense V-network (DenseVNet) on lung cancer screening LDCT images. A total of 160 LDCT cases for lung cancer screening (100 in the training set, 10 in the validation set, and 50 in the test set) was included in this study. Specifically, the template of pulmonary lobes (the right lung consists of three lobes, and the left lung consists of two lobes) were obtained from pixel-level annotations by semiautomatic segmentation platform. Then, the model was trained under the supervision of the LDCT training set. Finally, the trained model was used to segment the LDCT in the test set. Dice coefficient, Jaccard coefficient, and Hausdorff distance were adopted as evaluation metrics to verify the performance of our segmentation model.

RESULTS

In this study, the model achieved the accurate segmentation of each pulmonary lobe in seconds without the intervention of researchers. The testing set consisted 50 LDCT cases were used to evaluate the performance of the segmentation model. The all-lobes Dice coefficient of the test set was 0.944, the Jaccard coefficient was 0.896, and the Hausdorff distance was 92.908 mm.

CONCLUSIONS

The segmentation model based on LDCT can automatically and robustly and efficiently segment pulmonary lobes. It will provide effective location information and contour constraints for pulmonary nodule detection on LDCT images for lung cancer screening, which may have potential clinical application.

摘要

背景

开发并验证一种基于深度学习的全自动分割算法,用于在低剂量计算机断层扫描(LDCT)图像上分割肺叶。

方法

本研究提出了一种使用名为密集V网络(DenseVNet)的全卷积神经网络对肺癌筛查LDCT图像上的肺叶进行自动分割的方法。本研究共纳入160例肺癌筛查LDCT病例(训练集100例,验证集10例,测试集50例)。具体而言,通过半自动分割平台从像素级注释中获取肺叶模板(右肺由三个肺叶组成,左肺由两个肺叶组成)。然后,在LDCT训练集的监督下训练模型。最后,使用训练好的模型对测试集中的LDCT进行分割。采用Dice系数、Jaccard系数和豪斯多夫距离作为评估指标来验证我们分割模型的性能。

结果

在本研究中,该模型无需研究人员干预即可在数秒内实现对每个肺叶的准确分割。使用由50例LDCT病例组成的测试集来评估分割模型的性能。测试集的全肺叶Dice系数为0.944,Jaccard系数为0.896,豪斯多夫距离为92.908毫米。

结论

基于LDCT的分割模型能够自动、稳健且高效地分割肺叶。它将为肺癌筛查的LDCT图像上的肺结节检测提供有效的位置信息和轮廓约束,可能具有潜在的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5f/7944332/6a95d81ad61f/atm-09-04-291-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验