Suppr超能文献

基于模型的可解释预测 COVID-19 患者严重程度和关键因素。

An Interpretable Model-Based Prediction of Severity and Crucial Factors in Patients with COVID-19.

机构信息

Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.

Department of CT, Maoming People's Hospital, Maoming, Guangdong 525000, China.

出版信息

Biomed Res Int. 2021 Mar 1;2021:8840835. doi: 10.1155/2021/8840835. eCollection 2021.

Abstract

This study established an interpretable machine learning model to predict the severity of coronavirus disease 2019 (COVID-19) and output the most crucial deterioration factors. Clinical information, laboratory tests, and chest computed tomography (CT) scans at admission were collected. Two experienced radiologists reviewed the scans for the patterns, distribution, and CT scores of lung abnormalities. Six machine learning models were established to predict the severity of COVID-19. After parameter tuning and performance comparison, the optimal model was explained using Shapley Additive explanations to output the crucial factors. This study enrolled and classified 198 patients into mild ( = 162; 46.93 ± 14.49 years old) and severe ( = 36; 60.97 ± 15.91 years old) groups. The severe group had a higher temperature (37.42 ± 0.99°C vs. 36.75 ± 0.66°C), CT score at admission, neutrophil count, and neutrophil-to-lymphocyte ratio than the mild group. The XGBoost model ranked first among all models, with an AUC, sensitivity, and specificity of 0.924, 90.91%, and 97.96%, respectively. The early stage of chest CT, total CT score of the percentage of lung involvement, and age were the top three contributors to the prediction of the deterioration of XGBoost. A higher total score on chest CT had a more significant impact on the prediction. In conclusion, the XGBoost model to predict the severity of COVID-19 achieved excellent performance and output the essential factors in the deterioration process, which may help with early clinical intervention, improve prognosis, and reduce mortality.

摘要

本研究建立了一个可解释的机器学习模型,以预测 2019 年冠状病毒病(COVID-19)的严重程度,并输出最关键的恶化因素。收集了入院时的临床信息、实验室检查和胸部计算机断层扫描(CT)扫描。两名经验丰富的放射科医生对扫描结果进行了评估,以评估肺部异常的模式、分布和 CT 评分。建立了六个机器学习模型来预测 COVID-19 的严重程度。经过参数调整和性能比较,使用 Shapley Additive 解释对最佳模型进行了解释,以输出关键因素。本研究共纳入并将 198 例患者分为轻症(n=162;46.93±14.49 岁)和重症(n=36;60.97±15.91 岁)两组。重症组的体温(37.42±0.99°C 比 36.75±0.66°C)、入院时的 CT 评分、中性粒细胞计数和中性粒细胞与淋巴细胞比值均高于轻症组。XGBoost 模型在所有模型中排名第一,AUC、敏感性和特异性分别为 0.924、90.91%和 97.96%。XGBoost 预测恶化的三个最重要因素为胸部 CT 的早期阶段、肺部受累百分比的总 CT 评分和年龄。胸部 CT 的总评分越高,对预测的影响越大。总之,XGBoost 模型预测 COVID-19 的严重程度表现出色,并输出了恶化过程中的关键因素,这可能有助于早期临床干预、改善预后和降低死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be66/7930914/0068dc9c2e50/BMRI2021-8840835.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验