Suppr超能文献

2019冠状病毒病——探究长期病症类型和共病程度对寿命损失年数的影响:一项建模研究

COVID-19 - exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: a modelling study.

作者信息

Hanlon Peter, Chadwick Fergus, Shah Anoop, Wood Rachael, Minton Jon, McCartney Gerry, Fischbacher Colin, Mair Frances S, Husmeier Dirk, Matthiopoulos Jason, McAllister David A

机构信息

University of Glasgow, Glasgow, UK.

University of Edinburgh, Edinburgh, UK.

出版信息

Wellcome Open Res. 2021 Mar 1;5:75. doi: 10.12688/wellcomeopenres.15849.3. eCollection 2020.

Abstract

COVID-19 is responsible for increasing deaths globally. As most people dying with COVID-19 are older with underlying long-term conditions (LTCs), some speculate that YLL are low. We aim to estimate YLL attributable to COVID-19, before and after adjustment for number/type of LTCs, using the limited data available early in the pandemic.  We first estimated YLL from COVID-19 using WHO life tables, based on published age/sex data from COVID-19 deaths in Italy. We then used aggregate data on number/type of LTCs in a Bayesian model to estimate likely combinations of LTCs among people dying with COVID-19. We used routine UK healthcare data from Scotland and Wales to estimate life expectancy based on age/sex/these combinations of LTCs using Gompertz models from which we then estimate YLL.  Using the standard WHO life tables, YLL per COVID-19 death was 14 for men and 12 for women. After adjustment for number and type of LTCs, the mean YLL was slightly lower, but remained high (11.6 and 9.4 years for men and women, respectively). The number and type of LTCs led to wide variability in the estimated YLL at a given age (e.g. at ≥80 years, YLL was >10 years for people with 0 LTCs, and <3 years for people with ≥6).  Deaths from COVID-19 represent a substantial burden in terms of per-person YLL, more than a decade, even after adjusting for the typical number and type of LTCs found in people dying of COVID-19. The extent of multimorbidity heavily influences the estimated YLL at a given age. More comprehensive and standardised collection of data (including LTC type, severity, and potential confounders such as socioeconomic-deprivation and care-home status) is needed to optimise YLL estimates for specific populations, and to understand the global burden of COVID-19, and guide policy-making and interventions.

摘要

新冠病毒病(COVID-19)导致全球死亡人数增加。由于大多数死于COVID-19的人年龄较大且患有潜在的长期病症(LTCs),一些人推测,因该疾病早逝的年数(YLL)较低。我们旨在利用疫情早期有限的数据,在对LTCs的数量/类型进行调整前后,估算归因于COVID-19的YLL。我们首先根据意大利公布的COVID-19死亡病例的年龄/性别数据,使用世界卫生组织(WHO)生命表估算COVID-19导致的YLL。然后,我们在贝叶斯模型中使用LTCs数量/类型的汇总数据,以估算死于COVID-19的人群中可能的LTCs组合。我们使用来自苏格兰和威尔士的英国常规医疗数据,基于年龄/性别/这些LTCs组合,利用冈珀茨模型估算预期寿命,进而估算YLL。使用标准的WHO生命表,每例COVID-19死亡的YLL男性为14年,女性为12年。在对LTCs的数量和类型进行调整后,平均YLL略低,但仍然很高(男性和女性分别为11.6年和9.4年)。在给定年龄下,LTCs的数量和类型导致估算的YLL存在很大差异(例如,在≥80岁时,无LTCs的人的YLL>10年,而有≥6种LTCs的人的YLL<3年)。即使在对死于COVID-19的人身上发现的典型LTCs数量和类型进行调整之后,COVID-19导致的死亡在人均YLL方面仍代表着超过十年的沉重负担。在给定年龄下,共病程度严重影响估算的YLL。需要更全面和标准化地收集数据(包括LTC类型、严重程度以及社会经济剥夺和养老院状况等潜在混杂因素),以优化特定人群的YLL估算,了解COVID-19的全球负担,并指导政策制定和干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6010/7968102/b14d59bceeb1/wellcomeopenres-5-18386-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验