Del Gaizo John, Catchpole Ken R, Alekseyenko Alexander V
Biomedical Informatics Center, Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
JAMIA Open. 2021 Mar 1;4(1):ooab007. doi: 10.1093/jamiaopen/ooab007. eCollection 2021 Jan.
Research & Exploratory Analysis Driven Time-data Visualization () is an open source R Shiny application for visualizing irregularly and regularly spaced longitudinal data. provides unique filtering and changepoint analysis (CPA) features. The need for these analyses was motivated by research of surgical work-flow disruptions in operating room settings. Specifically, for the analysis of the causes and characteristics of periods of high disruption-rates, which are associated with adverse surgical outcomes.
is a graphical application, and the main component of a package of the same name. generates and evaluates code to filter and visualize data. Users can view the visualization code from within the application, which facilitates reproducibility. The data input requirements are simple, a table with a time column with no missing values. The input can either be in the form of a file, or an in-memory dataframe- which is effective for rapid visualization during curation.
We used to automatically detect surgical disruption cascades. We found that the most common disruption type during a cascade was training, followed by equipment.
fills a need for visualization software of surgical disruptions and other longitudinal data. Every visualization is , the exact source code that executes to create a visualization is available from within the application. is , it can plot any tabular dataset given the simple requirements that there is a numeric, datetime, or datetime string column with no missing values. Finally, the tab-based architecture of is easily , it is relatively simple to add new functionality by implementing a tab in the source code.
enables quick identification of patterns through customizable longitudinal plots; faceting; CPA; and user-specified filters. The package is available on GitHub under an MIT license.
研究与探索性分析驱动的时间数据可视化()是一个用于可视化不规则和等距纵向数据的开源R Shiny应用程序。 提供独特的过滤和变点分析(CPA)功能。手术室环境中手术工作流程中断的研究激发了对这些分析的需求。具体而言,用于分析与不良手术结果相关的高中断率时期的原因和特征。
是一个图形应用程序,也是同名软件包的主要组件。 生成并评估用于过滤和可视化数据的代码。用户可以从应用程序中查看可视化代码,这有助于实现可重复性。数据输入要求很简单,是一个包含时间列且无缺失值的表格。输入可以是文件形式,也可以是内存中的数据框——这对于在数据整理期间进行快速可视化很有效。
我们使用 自动检测手术中断级联。我们发现级联期间最常见的中断类型是培训,其次是设备。
满足了对手术中断和其他纵向数据可视化软件的需求。每个可视化都是 ,从应用程序中可以获取 执行以创建可视化的确切源代码。 是 ,只要满足有一个无缺失值的数字、日期时间或日期时间字符串列这一简单要求,它就可以绘制任何表格数据集。最后, 的基于标签的架构很容易 ,通过在源代码中实现一个标签来添加新功能相对简单。
通过可定制的纵向图、分面、CPA和用户指定的过滤器,能够快速识别模式。该软件包在GitHub上以MIT许可提供。