School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Environ Sci Technol. 2021 Apr 20;55(8):4287-4304. doi: 10.1021/acs.est.0c07936. Epub 2021 Mar 12.
Nanomaterial adsorbents (NAs) have shown promise to efficiently remove toxic metals from water, yet their practical use remains challenging. Limited understanding of adsorption mechanisms and scaling up evaluation are the two main obstacles. To fully realize the practical use of NAs for metal removal, we review the advanced tools and chemical principles to identify mechanisms, highlight the importance of adsorption capacity and kinetics on engineering design, and propose a systematic engineering scenario for full-scale NA implementation. Specifically, we provide in-depth insight for using density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate adsorption mechanisms in terms of active site verification and molecular interaction configuration. Furthermore, we discuss engineering issues for designing, scaling, and operating NA systems, including adsorption modeling, reactor selection, and NA regeneration, recovery, and disposal. This review also prioritizes research needs for (i) determining NA microstructure properties using DFT, XAFS, and machine learning and (ii) recovering NAs from treated water. Our critical review is expected to guide and advance the development of highly efficient NAs for engineering applications.
纳米材料吸附剂(NAs)已被证明可有效地从水中去除有毒金属,但其实用化仍然具有挑战性。对吸附机制的理解有限和评估的扩大化是两个主要障碍。为了充分实现 NAs 在金属去除方面的实际应用,我们综述了先进的工具和化学原理,以确定机制,强调吸附容量和动力学在工程设计中的重要性,并提出了一个用于全规模 NA 实施的系统工程方案。具体而言,我们深入探讨了使用密度泛函理论(DFT)和/或 X 射线吸收精细结构(XAFS)来阐明活性位点验证和分子相互作用结构方面的吸附机制。此外,我们讨论了设计、放大和操作 NA 系统的工程问题,包括吸附建模、反应器选择以及 NA 的再生、回收和处置。本综述还确定了研究需求,包括(i)使用 DFT、XAFS 和机器学习确定 NA 微观结构特性,以及(ii)从处理水中回收 NAs。我们的批判性综述有望指导和推进高效 NAs 在工程应用中的发展。