Eltschkner Sandra, Kehrein Josef, Le Thien Anh, Davoodi Shabnam, Merget Benjamin, Basak Sneha, Weinrich Jonas D, Schiebel Johannes, Tonge Peter J, Engels Bernd, Sotriffer Christoph, Kisker Caroline
Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany.
Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 223 62 Lund, Sweden.
ACS Infect Dis. 2021 Apr 9;7(4):746-758. doi: 10.1021/acsinfecdis.0c00437. Epub 2021 Mar 12.
The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the enoyl-ACP-reductase saFabI and the closely related isoenzyme from , InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.
烯酰-酰基载体蛋白(ACP)还原酶(ENR)是细菌脂肪酸合成途径中的一种关键酶。已证明,带有二苯醚(DPE)支架的小分子抑制剂在开发针对这类酶的高度特异性和有效药物方面具有巨大潜力。有趣的是,DPE支架的不同取代模式已显示出对来自不同生物体的ENR的动力学和热力学行为产生不同影响。在此,我们研究了在慢紧密结合抑制剂SKTS1背景下4'-吡啶酮取代基对烯酰-ACP还原酶saFabI以及来自结核分枝杆菌的密切相关同工酶InhA的抑制作用,并探索了DPE抑制剂在底物结合口袋内的一个新的相互作用位点。结合高分辨率晶体结构、分子动力学(MD)模拟、动力学测量和量子力学(QM)计算,我们提供证据表明,4'-吡啶酮取代基在与两种ENR结合时采用不同互变异构形式。我们还阐明了导致SKTS1在两种酶上停留时间存在显著差异的结构决定因素。