Department of Chemistry, Government College of Engineering and Leather Technology, Salt Lake, Sector-3, Kolkata, PIN-700106, West Bengal, India.
Biophys Chem. 2021 Feb;269:106510. doi: 10.1016/j.bpc.2020.106510. Epub 2020 Nov 28.
The search for therapeutic drugs that can neutralize the effects of COVID-2019 (SARS-CoV-2) infection is the main focus of current research. The coronavirus main protease (M) is an attractive target for anti-coronavirus drug design. Further, α-ketoamide is proved to be very effective as a reversible covalent-inhibitor against cysteine proteases. Herein, we report on the non-covalent to the covalent adduct formation mechanism of α-ketoamide-based inhibitor with the enzyme active site amino acids by QM/SQM model (QM = quantum mechanical, SQM = semi-empirical QM). To uncover the mechanism, we focused on two approaches: a concerted and a stepwise fashion. The concerted pathway proceeds via deprotonation of the thiol of cysteine (here, Cys SγH) and simultaneous reversible nucleophilic attack of sulfur onto the α-ketoamide warhead. In this work, we propose three plausible concerted pathways. On the contrary, in a traditional two-stage pathway, the first step is proton transfer from Cys SγH to His Nδ forming an ion pair, and consecutively, in the second step, the thiolate ion attacks the α-keto group to form a thiohemiketal. In this reaction, we find that the stability of the tetrahedral intermediate oxyanion/hydroxyl group plays an important role. Moreover, as the α-keto group has two faces Si or Re for the nucleophilic attack, we considered both possibilities of attack leading to S- and R-thiohemiketal. We computed the structural, electronic, and energetic parameters of all stationary points including transition states via ONIOM and pure DFT method. Additionally, to characterize covalent, weak noncovalent interaction (NCI) and hydrogen-bonds, we applied NCI-reduced density gradient (NCI-RDG) methods along with Bader's Quantum Theory of Atoms-in-Molecules (QTAIM) and natural bonding orbital (NBO) analysis.
寻找能够中和 COVID-19(SARS-CoV-2)感染效应的治疗性药物是当前研究的主要焦点。冠状病毒主蛋白酶(M)是抗冠状病毒药物设计的一个有吸引力的靶标。此外,α-酮酰胺已被证明是一种非常有效的半胱氨酸蛋白酶可逆共价抑制剂。在此,我们通过 QM/SQM 模型(QM=量子力学,SQM=半经验 QM)报告了基于α-酮酰胺的抑制剂与酶活性位点氨基酸的非共价到共价加合物形成机制。为了揭示机制,我们专注于两种方法:协同和逐步。协同途径通过半胱氨酸(此处为 Cys SγH)的硫醇去质子化和硫原子对α-酮酰胺弹头的同时可逆亲核攻击进行。在这项工作中,我们提出了三种可能的协同途径。相反,在传统的两步途径中,第一步是 Cys SγH 上的质子转移到 His Nδ 形成离子对,然后在第二步中,硫醇离子攻击α-酮基团形成硫代半缩酮。在这个反应中,我们发现四面体中间体氧阴离子/羟基的稳定性起着重要作用。此外,由于α-酮基团有两个面 Si 或 Re 可用于亲核攻击,我们考虑了两种可能的攻击方式,导致 S-和 R-硫代半缩酮。我们通过 ONIOM 和纯 DFT 方法计算了所有包括过渡态在内的稳定点的结构、电子和能量参数。此外,为了表征共价、弱非共价相互作用(NCI)和氢键,我们应用了 NCI 简化密度梯度(NCI-RDG)方法以及 Bader 的分子中的原子量子理论(QTAIM)和自然键轨道(NBO)分析。