文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的图卷积网络模型与列线图联合预测肝细胞癌微血管侵犯的临床价值

Clinical prediction of microvascular invasion in hepatocellular carcinoma using an MRI-based graph convolutional network model integrated with nomogram.

机构信息

Department of Radiology, Harbin Medical University Cancer Hospital, Harbin 150010, Heilongjiang, China.

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

出版信息

Br J Radiol. 2024 May 7;97(1157):938-946. doi: 10.1093/bjr/tqae056.


DOI:10.1093/bjr/tqae056
PMID:38552308
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11075980/
Abstract

OBJECTIVES: Based on enhanced MRI, a prediction model of microvascular invasion (MVI) for hepatocellular carcinoma (HCC) was developed using graph convolutional network (GCN) combined nomogram. METHODS: We retrospectively collected 182 HCC patients confirmed histopathologically, all of them performed enhanced MRI before surgery. The patients were randomly divided into training and validation groups. Radiomics features were extracted from the arterial phase (AP), portal venous phase (PVP), and delayed phase (DP), respectively. After removing redundant features, the graph structure by constructing the distance matrix with the feature matrix was built. Screening the superior phases and acquired GCN Score (GS). Finally, combining clinical, radiological and GS established the predicting nomogram. RESULTS: 27.5% (50/182) patients were with MVI positive. In radiological analysis, intratumoural artery (P = 0.007) was an independent predictor of MVI. GCN model with grey-level cooccurrence matrix-grey-level run length matrix features exhibited area under the curves of the training group was 0.532, 0.690, and 0.885 and the validation group was 0.583, 0.580, and 0.854 for AP, PVP, and DP, respectively. DP was selected to develop final model and got GS. Combining GS with diameter, corona enhancement, mosaic architecture, and intratumoural artery constructed a nomogram which showed a C-index of 0.884 (95% CI: 0.829-0.927). CONCLUSIONS: The GCN model based on DP has a high predictive ability. A nomogram combining GS, clinical and radiological characteristics can be a simple and effective guiding tool for selecting HCC treatment options. ADVANCES IN KNOWLEDGE: GCN based on MRI could predict MVI on HCC.

摘要

目的:基于增强 MRI,利用图卷积网络(GCN)联合列线图建立肝癌微血管侵犯(MVI)的预测模型。

方法:回顾性收集 182 例经病理证实的肝癌患者,所有患者均在术前进行增强 MRI 检查。患者随机分为训练组和验证组。分别从动脉期(AP)、门静脉期(PVP)和延迟期(DP)提取影像组学特征。在去除冗余特征后,通过构建距离矩阵来构建图结构。筛选优势相并获取 GCN 评分(GS)。最后,结合临床、影像学和 GS 建立预测列线图。

结果:50/182(27.5%)例患者 MVI 阳性。影像学分析中,肿瘤内动脉(P=0.007)是 MVI 的独立预测因子。基于灰度共生矩阵-灰度游程矩阵特征的 GCN 模型在训练组中的曲线下面积分别为 0.532、0.690 和 0.885,在验证组中的曲线下面积分别为 0.583、0.580 和 0.854。选择 DP 建立最终模型并获取 GS。将 GS 与直径、晕环增强、马赛克结构和肿瘤内动脉相结合构建列线图,其 C 指数为 0.884(95%CI:0.829-0.927)。

结论:基于 DP 的 GCN 模型具有较高的预测能力。结合 GS、临床和影像学特征的列线图可以成为选择 HCC 治疗方案的简单有效指导工具。

知识进展:基于 MRI 的 GCN 可预测 HCC 的 MVI。

相似文献

[1]
Clinical prediction of microvascular invasion in hepatocellular carcinoma using an MRI-based graph convolutional network model integrated with nomogram.

Br J Radiol. 2024-5-7

[2]
MRI-based clinical-radiomics nomogram model for predicting microvascular invasion in hepatocellular carcinoma.

Med Phys. 2024-7

[3]
Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Eur Radiol. 2019-2-15

[4]
Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma.

Acad Radiol. 2025-1

[5]
Development and validation of a cross-modality tensor fusion model using multi-modality MRI radiomics features and clinical radiological characteristics for the prediction of microvascular invasion in hepatocellular carcinoma.

Eur J Surg Oncol. 2025-1

[6]
Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging.

Radiol Med. 2024-8

[7]
A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma.

Diagn Interv Radiol. 2018

[8]
Advancing microvascular invasion diagnosis: a multi-center investigation of novel MRI-based models for precise detection and classification in early-stage small hepatocellular carcinoma (≤ 3 cm).

Abdom Radiol (NY). 2025-5

[9]
A clinical study exploring the prediction of microvascular invasion in hepatocellular carcinoma through the use of combined enhanced CT and MRI radiomics.

PLoS One. 2025-1-28

[10]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

引用本文的文献

[1]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

本文引用的文献

[1]
Understanding Sources of Variation to Improve the Reproducibility of Radiomics.

Front Oncol. 2021-3-29

[2]
Preoperative MR imaging for predicting early recurrence of solitary hepatocellular carcinoma without microvascular invasion.

Eur J Radiol. 2021-5

[3]
Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation.

J Biomed Inform. 2021-4

[4]
Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

J Magn Reson Imaging. 2021-7

[5]
kGCN: a graph-based deep learning framework for chemical structures.

J Cheminform. 2020-5-12

[6]
Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction.

Med Image Anal. 2021-4

[7]
A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy.

Cancer Imaging. 2020-11-16

[8]
Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction.

Comput Biol Med. 2020-12

[9]
Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning.

J Cancer Res Clin Oncol. 2021-3

[10]
Graph-convolutional-network-based interactive prostate segmentation in MR images.

Med Phys. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索