Kaiser Permanente Center for Health Research, 3800 N Interstate, Portland, OR, 97227, USA.
Gen Hosp Psychiatry. 2021 May-Jun;70:31-37. doi: 10.1016/j.genhosppsych.2021.02.008. Epub 2021 Mar 4.
Assess patient understanding of, potential concerns with, and implementation preferences related to automated suicide risk identification using electronic health record data and machine learning.
Focus groups (n = 23 participants) informed a web-based survey sent to 11,486 Kaiser Permanente Northwest members in April 2020. Survey items assessed patient preferences using Likert and visual analog scales (means scored from -50 to 50). Descriptive statistics summarized findings.
1357 (12%) participants responded. Most (84%) found machine learning-derived suicide risk identification an acceptable use of electronic health record data; however, 67% objected to use of externally sourced data. Participants felt consent (or opt-out) should be required (mean = -14). The majority (69%) supported outreach to at-risk individuals by a trusted clinician through care messages (57%) or telephone calls (47-54%). Highest endorsements were for psychiatrists/therapists (99%) or a primary care clinician (75-96%); less than half (42%) supported outreach by any clinician and participants generally felt only trusted clinicians should have access to risk information (mean = -16).
Patients generally support use of EHR data (not externally sourced risk information) to inform automated suicide risk identification models but prefer to consent or opt-out; trusted clinicians should outreach by telephone or care message to at risk individuals.
评估患者对使用电子健康记录数据和机器学习自动识别自杀风险的理解、潜在关注点和实施偏好。
通过焦点小组(23 名参与者),为 2020 年 4 月向 Kaiser Permanente Northwest 的 11486 名成员发送的网络调查提供信息。调查项目使用李克特量表和视觉模拟量表(得分从-50 到 50)评估患者的偏好。描述性统计总结了研究结果。
1357 名(12%)参与者做出了回应。大多数(84%)人认为机器学习衍生的自杀风险识别是电子健康记录数据的可接受用途;然而,67%的人反对使用外部来源的数据。参与者认为应该要求(或选择退出)同意(mean = -14)。大多数(69%)人支持通过可信赖的临床医生通过护理信息(57%)或电话(47-54%)向高危个体提供服务。最高的支持率是精神病医生/治疗师(99%)或初级保健临床医生(75-96%);不到一半(42%)的人支持任何临床医生的服务,参与者普遍认为只有可信赖的临床医生才能访问风险信息(mean = -16)。
患者通常支持使用电子健康记录数据(而非外部风险信息)来告知自动自杀风险识别模型,但他们更愿意同意或选择退出;可信赖的临床医生应通过电话或护理信息向高危个体提供服务。