Suppr超能文献

患者对使用电子健康记录和机器学习来识别自杀风险的可接受性和实施偏好的看法。

Patient perspectives on acceptability of, and implementation preferences for, use of electronic health records and machine learning to identify suicide risk.

机构信息

Kaiser Permanente Center for Health Research, 3800 N Interstate, Portland, OR, 97227, USA.

出版信息

Gen Hosp Psychiatry. 2021 May-Jun;70:31-37. doi: 10.1016/j.genhosppsych.2021.02.008. Epub 2021 Mar 4.

Abstract

OBJECTIVE

Assess patient understanding of, potential concerns with, and implementation preferences related to automated suicide risk identification using electronic health record data and machine learning.

METHOD

Focus groups (n = 23 participants) informed a web-based survey sent to 11,486 Kaiser Permanente Northwest members in April 2020. Survey items assessed patient preferences using Likert and visual analog scales (means scored from -50 to 50). Descriptive statistics summarized findings.

RESULTS

1357 (12%) participants responded. Most (84%) found machine learning-derived suicide risk identification an acceptable use of electronic health record data; however, 67% objected to use of externally sourced data. Participants felt consent (or opt-out) should be required (mean = -14). The majority (69%) supported outreach to at-risk individuals by a trusted clinician through care messages (57%) or telephone calls (47-54%). Highest endorsements were for psychiatrists/therapists (99%) or a primary care clinician (75-96%); less than half (42%) supported outreach by any clinician and participants generally felt only trusted clinicians should have access to risk information (mean = -16).

CONCLUSION

Patients generally support use of EHR data (not externally sourced risk information) to inform automated suicide risk identification models but prefer to consent or opt-out; trusted clinicians should outreach by telephone or care message to at risk individuals.

摘要

目的

评估患者对使用电子健康记录数据和机器学习自动识别自杀风险的理解、潜在关注点和实施偏好。

方法

通过焦点小组(23 名参与者),为 2020 年 4 月向 Kaiser Permanente Northwest 的 11486 名成员发送的网络调查提供信息。调查项目使用李克特量表和视觉模拟量表(得分从-50 到 50)评估患者的偏好。描述性统计总结了研究结果。

结果

1357 名(12%)参与者做出了回应。大多数(84%)人认为机器学习衍生的自杀风险识别是电子健康记录数据的可接受用途;然而,67%的人反对使用外部来源的数据。参与者认为应该要求(或选择退出)同意(mean = -14)。大多数(69%)人支持通过可信赖的临床医生通过护理信息(57%)或电话(47-54%)向高危个体提供服务。最高的支持率是精神病医生/治疗师(99%)或初级保健临床医生(75-96%);不到一半(42%)的人支持任何临床医生的服务,参与者普遍认为只有可信赖的临床医生才能访问风险信息(mean = -16)。

结论

患者通常支持使用电子健康记录数据(而非外部风险信息)来告知自动自杀风险识别模型,但他们更愿意同意或选择退出;可信赖的临床医生应通过电话或护理信息向高危个体提供服务。

相似文献

引用本文的文献

6
Harnessing digital health data for suicide prevention and care: A rapid review.利用数字健康数据预防自杀和提供护理:快速综述。
Digit Health. 2025 Feb 23;11:20552076241308615. doi: 10.1177/20552076241308615. eCollection 2025 Jan-Dec.

本文引用的文献

1
Patient Feedback on the Use of Predictive Analytics for Suicide Prevention.患者对预测分析在预防自杀中的应用的反馈。
Psychiatr Serv. 2021 Feb 1;72(2):129-135. doi: 10.1176/appi.ps.202000092. Epub 2020 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验