Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
University of Chinese Academy of Sciences, Beijing, China.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.00018-21.
Selective oxidation of C-H bonds in alkylphenols holds great significance for not only structural derivatization in pharma- and biomanufacturing but also biological degradation of these toxic chemicals in environmental protection. A unique chemomimetic biocatalytic system using enzymes from a -cresol biodegradation pathway has recently been developed. As the central biocatalyst, the cytochrome P450 monooxygenase CreJ oxidizes diverse - and -alkylphenol phosphates with perfect stereoselectivity at different efficiencies. However, the mechanism of regio- and stereoselectivity of this chemomimetic biocatalytic system remained unclear. Here, using - and -ethylphenol substrates, we elucidate the CreJ-catalyzed key steps for selective oxidations. The crystal structure of CreJ in complex with -ethylphenol phosphate was solved and compared with its complex structure with -ethylphenol phosphate isomer. The results indicate that the conformational changes of substrate-binding residues are slight, while the substrate promiscuity is achieved mainly by the available space in the catalytic cavity. Moreover, the catalytic preferences of regio- and stereoselective hydroxylation for the two ethylphenol substrates is explored by molecular dynamics simulations. The ethyl groups in the complexes display different flexibilities, and the distances of the active oxygen to H and H of methylene agree with the experimental stereoselectivity. The regioselectivity can be explained by the distances and bond dissociation energy. These results provide not only the mechanistic insights into CreJ regio- and stereoselectivity but also the structural basis for further P450 enzyme design and engineering. The key cytochrome P450 monooxygenase CreJ showed excellent regio- and stereoselectivity in the oxidation of various alkylphenol substrates. C-H bond functionalization of these toxic alkylphenols holds great significance for both biological degradation of these environmental chemicals and production of value-added structural derivatives in pharmaceutical and biochemical industries. Our results, combined with enzymatic assays, crystal structure determination of enzyme-substrate complex, and molecular dynamics simulations, provide not only significant mechanism elucidation of the regio- and stereoselective catalyzation mediated by CreJ but also the promising directions for future engineering efforts of this enzyme toward more useful products. It also has great extendable potential to couple this multifunctional P450 enzyme with other biocatalysts (e.g., hydroxyl-based glycosylase) to access more alkylphenol-derived high-value chemicals through environment-friendly biocatalysis and biotransformation.
选择氧化 C-H 键在烷基酚中不仅对于制药和生物制造中的结构衍生化具有重要意义,而且对于环境保护中这些有毒化学物质的生物降解也具有重要意义。最近开发了一种使用来自 - 甲酚生物降解途径的酶的独特化学模拟仿生生物催化系统。作为中心生物催化剂,细胞色素 P450 单加氧酶 CreJ 以不同的效率氧化各种 - 和 - 烷基酚磷酸盐,具有完美的立体选择性。然而,这种化学模拟仿生生物催化系统的区域和立体选择性机制仍不清楚。在这里,使用 - 和 - 乙基苯酚底物,我们阐明了 CreJ 催化的选择性氧化关键步骤。确定了 CreJ 与 - 乙基苯酚磷酸盐复合物的晶体结构,并将其与 - 乙基苯酚磷酸盐异构体复合物的结构进行了比较。结果表明,底物结合残基的构象变化很小,而底物的混杂性主要通过催化腔中的可用空间来实现。此外,通过分子动力学模拟探索了两种乙基苯酚底物区域和立体选择性羟化的催化偏好。复合物中的乙基显示出不同的柔韧性,并且活性氧与亚甲基的 H 和 H 之间的距离与实验立体选择性一致。区域选择性可以通过距离和键离解能来解释。这些结果不仅为 CreJ 区域和立体选择性提供了机制见解,而且为进一步的 P450 酶设计和工程提供了结构基础。关键的细胞色素 P450 单加氧酶 CreJ 在各种烷基酚底物的氧化中表现出优异的区域和立体选择性。这些有毒烷基酚的 C-H 键功能化对于这些环境化学物质的生物降解以及制药和生化工业中增值结构衍生物的生产都具有重要意义。我们的结果,结合酶促测定、酶-底物复合物晶体结构测定和分子动力学模拟,不仅为 CreJ 介导的区域和立体选择性催化提供了重要的机制阐明,而且为该酶未来的工程努力朝着更有用的产物方向提供了有希望的方向。它还具有很大的可扩展性潜力,可以将这种多功能 P450 酶与其他生物催化剂(例如基于羟基的糖基化酶)结合使用,通过环保的生物催化和生物转化获得更多的烷基酚衍生的高价值化学品。