Suppr超能文献

利用检测、病例、死亡和血清流行率数据对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)传播进行半参数建模。

Semi-parametric modeling of SARS-CoV-2 transmission using tests, cases, deaths, and seroprevalence data.

作者信息

Bayer Damon, Goldstein Isaac H, Fintzi Jonathan, Lumbard Keith, Ricotta Emily, Warner Sarah, Busch Lindsay M, Strich Jeffrey R, Chertow Daniel S, Parker Daniel M, Boden-Albala Bernadette, Dratch Alissa, Chhuon Richard, Quick Nichole, Zahn Matthew, Minin Volodymyr M

机构信息

Department of Statistics, University of California, Irvine, California, U.S.A.

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, U.S.A.

出版信息

ArXiv. 2023 Mar 11:arXiv:2009.02654v3.

Abstract

Mechanistic models fit to streaming surveillance data are critical to understanding the transmission dynamics of an outbreak as it unfolds in real-time. However, transmission model parameter estimation can be imprecise, and sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model. To partially overcome this obstacle, Bayesian models have been proposed to integrate multiple surveillance data streams. We devised a modeling framework for integrating SARS-CoV-2 diagnostics test and mortality time series data, as well as seroprevalence data from cross-sectional studies, and tested the importance of individual data streams for both inference and forecasting. Importantly, our model for incidence data accounts for changes in the total number of tests performed. We model the transmission rate, infection-to-fatality ratio, and a parameter controlling a functional relationship between the true case incidence and the fraction of positive tests as time-varying quantities and estimate changes of these parameters nonparametrically. We compare our base model against modified versions which do not use diagnostics test counts or seroprevalence data to demonstrate the utility of including these often unused data streams. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California between March 2020 and February 2021 and find that 32-72% of the Orange County residents experienced SARS-CoV-2 infection by mid-January, 2021. Despite this high number of infections, our results suggest that the abrupt end of the winter surge in January 2021 was due to both behavioral changes and a high level of accumulated natural immunity.

摘要

适用于动态监测数据的机理模型对于理解疫情实时传播动态至关重要。然而,传播模型参数估计可能不准确,有时甚至无法进行,因为监测数据存在噪声,且无法提供机理模型所有方面的信息。为了部分克服这一障碍,人们提出了贝叶斯模型来整合多个监测数据流。我们设计了一个建模框架,用于整合新冠病毒诊断检测和死亡率时间序列数据,以及横断面研究中的血清流行率数据,并测试了各个数据流对于推断和预测的重要性。重要的是,我们的发病率数据模型考虑了检测总次数的变化。我们将传播率、感染致死率以及控制真实病例发病率与阳性检测比例之间函数关系的一个参数建模为时变数量,并对这些参数的变化进行非参数估计。我们将基础模型与不使用诊断检测计数或血清流行率数据的修改版本进行比较,以证明纳入这些通常未使用的数据流的效用。我们将贝叶斯数据整合方法应用于2020年3月至2021年2月在加利福尼亚州奥兰治县收集的新冠疫情监测数据,发现截至2021年1月中旬,32%-72%的奥兰治县居民感染了新冠病毒。尽管感染人数众多,但我们的结果表明,2起1年1月冬季疫情高峰的突然结束是行为变化和高水平累积自然免疫共同作用的结果。

相似文献

本文引用的文献

6
Burden and characteristics of COVID-19 in the United States during 2020.2020 年美国 COVID-19 的负担和特征。
Nature. 2021 Oct;598(7880):338-341. doi: 10.1038/s41586-021-03914-4. Epub 2021 Aug 26.
10
COVID-19 and excess mortality in the United States: A county-level analysis.新冠疫情与美国超额死亡:县级分析
PLoS Med. 2021 May 20;18(5):e1003571. doi: 10.1371/journal.pmed.1003571. eCollection 2021 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验