Suppr超能文献

复杂心脏心律失常的三维人体模型。

A 3-D human model of complex cardiac arrhythmias.

机构信息

Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.

Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; The Hull Family Cardiac Arrhythmia Management Laboratory, Canada.

出版信息

Acta Biomater. 2021 Sep 15;132:149-161. doi: 10.1016/j.actbio.2021.03.004. Epub 2021 Mar 10.

Abstract

Cardiac arrhythmias impact over 12 million people globally, with an increasing incidence of acquired arrhythmias. Although animal models have shed light onto fundamental arrhythmic mechanisms, species-specific differences and ethical concerns remain. Current human models using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) either lack the higher order tissue organization of the heart or implement unreliable arrhythmia induction techniques. Our goal was to develop a robust model of acquired arrhythmia by disrupting cardiomyocyte cell-cell signaling - one of the hallmarks of complex arrhythmias. Human 3D microtissues were generated by seeding hydrogel-embedded hiPSC-CMs and cardiac fibroblasts into an established microwell system designed to enable active and passive force assessment. Cell-cell signaling was disrupted using methyl-beta cyclodextrin (MBCD), previously shown to disassemble cardiac gap junctions. We demonstrate that arrhythmias were progressive and present in all microtissues within 5 days of treatment. Arrhythmic tissues exhibited reduced conduction velocity, an increased number of distinct action potentials, and reduced action potential cycle length. Arrhythmic tissues also showed significant reduction in contractile force generation, increased beating frequency, and increased passive tension and collagen deposition, in line with fibrosis. A subset of tissues with more complex arrhythmias exhibited 3D spatial differences in action potential propagation. Pharmacological and electrical defibrillation was successful. Transcriptomic data indicated an enrichment of genes consistent with cardiac arrhythmias. MBCD removal reversed the arrhythmic phenotype, resulting in synchronicity despite not resolving fibrosis. This innovative & reliable human-relevant 3D acquired arrhythmia model shows potential for improving our understanding of arrhythmic action potential conduction and furthering therapeutic development. STATEMENT OF SIGNIFICANCE: This work describes a 3D human model of cardiac arrhythmia-on-a-chip with high reproducibility, fidelity, and extensive functional applicability. To mimic in vivo conditions, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cardiac fibroblasts from healthy controls were combined in a biocompatible fibrin hydrogel and seeded between two deflectable polymeric rods. Using the innate functional properties of this 3D model as well as advanced optical imaging techniques we demonstrated dramatic changes in contraction rate, synchronicity, and electrophysiological conduction in arrhythmic tissues relative to controls. Taken together, these data demonstrate the distinctive potential of this new model for pathophysiological studies, and for arrhythmia drug testing applications.

摘要

心脏心律失常影响全球超过 1200 万人,获得性心律失常的发病率不断上升。尽管动物模型揭示了基本的心律失常机制,但仍存在种属特异性差异和伦理问题。目前使用人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)的人类模型要么缺乏心脏的更高阶组织结构,要么采用不可靠的心律失常诱导技术。我们的目标是通过破坏心肌细胞细胞间信号传递来开发获得性心律失常的稳健模型 - 这是复杂心律失常的标志之一。通过将水凝胶嵌入的 hiPSC-CMs 和心脏成纤维细胞播种到既定的微井系统中,生成了人类 3D 微组织,该系统旨在实现主动和被动力评估。使用甲基-β环糊精(MBCD)破坏细胞间信号传递,MBCD 先前已被证明可拆散心脏缝隙连接。我们证明,心律失常是进行性的,并且在治疗后 5 天内出现在所有微组织中。心律失常组织表现出传导速度降低,动作电位数量增加,动作电位周期长度缩短。心律失常组织的收缩力产生也显著降低,跳动频率增加,被动张力和胶原蛋白沉积增加,符合纤维化。一些具有更复杂心律失常的组织表现出动作电位传播的 3D 空间差异。药理学和电除颤是成功的。转录组数据表明,与心脏心律失常一致的基因富集。MBCD 去除逆转了心律失常表型,尽管没有解决纤维化问题,但仍保持同步性。这种创新且可靠的人类相关 3D 获得性心律失常模型具有提高我们对心律失常动作电位传导的理解并进一步开发治疗方法的潜力。意义声明:这项工作描述了一种具有高重现性、保真度和广泛功能适用性的 3D 人类心脏心律失常模型。为了模拟体内条件,来自健康对照者的人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)和心脏成纤维细胞被组合在生物相容的纤维蛋白水凝胶中,并播种在两个可变形聚合物棒之间。我们利用这种 3D 模型的固有功能特性以及先进的光学成像技术,证明了心律失常组织相对于对照组织在收缩率、同步性和电生理传导方面的剧烈变化。综上所述,这些数据表明了这种新模型在病理生理学研究和心律失常药物测试应用中的独特潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验