Suppr超能文献

使用严格的在线自我报告人体测量评估评估亚马逊土耳其机器人工人中的饮食失调患病率。

Eating disorder prevalence among Amazon MTurk workers assessed using a rigorous online, self-report anthropometric assessment.

机构信息

Department of Psychology, University of Wyoming, Laramie, WY, USA.

Department of Psychology, University of Wyoming, Laramie, WY, USA.

出版信息

Eat Behav. 2021 Apr;41:101481. doi: 10.1016/j.eatbeh.2021.101481. Epub 2021 Feb 19.

Abstract

Online, anonymous data collection is common and increasingly available to researchers studying eating disorders (ED), particularly since the development of online crowdsourcing platforms. Crowdsourcing for participant recruitment may also be one effective strategy to address ED research disruptions caused by the COVID-19 pandemic. We aimed to: (a) develop a rigorous method for assessing self-reported athropometrics; (b) determine if individuals with EDs self-select into MTurk studies assessing eating behaviors; and (c) characterize ED-related psychopathology in an MTurk sample. We recruited 400 US adults to complete an MTurk study assessing ED features. Results did not indicate the presence of a self-selection bias among individuals with EDs; however, 40% of the sample met criteria for a current ED diagnosis, with all diagnoses represented except ARFID, and 18.1% reported currently being in ED treatment. The sample was characterized by higher scores on measures of ED psychopathology compared to extant non-clinical norms. Approximately 66% of the overall sample and 73% of participants with EDs indicated that they have participated in more MTurk studies since the COVID-19 pandemic began. Finally, we identified an alternative approach to assessing self-reported height and weight that appears to reduce error, which we strongly recommend researchers conducting online surveys use. Our findings suggest that individuals with EDs appear to be overrepresented on MTurk and highlight the utility of crowdsourcing using MTurk as an ED data collection alternative during and after the COVID-19 pandemic.

摘要

在线匿名数据收集在研究饮食失调(ED)的研究人员中很常见,并且越来越普及,尤其是自在线众包平台发展以来。众包招募参与者也可能是解决由 COVID-19 大流行引起的 ED 研究中断的有效策略之一。我们旨在:(a)制定一种严格的方法来评估自我报告的人体测量学数据;(b)确定是否 ED 患者自我选择参加评估饮食行为的 MTurk 研究;以及(c)描述 MTurk 样本中的 ED 相关精神病理学。我们招募了 400 名美国成年人来完成一项评估 ED 特征的 MTurk 研究。结果并未表明 ED 患者存在自我选择偏差;但是,40%的样本符合当前 ED 诊断标准,除了 ARFID 之外,所有诊断均有代表,18.1%的人报告目前正在接受 ED 治疗。与现有的非临床规范相比,该样本在 ED 精神病理学测量上的得分更高。大约 66%的总体样本和 73%的 ED 患者表示,自 COVID-19 大流行开始以来,他们已经参加了更多的 MTurk 研究。最后,我们确定了一种替代方法来评估自我报告的身高和体重,该方法似乎可以减少误差,我们强烈建议进行在线调查的研究人员使用。我们的研究结果表明,ED 患者在 MTurk 上的比例似乎过高,并且突出了在 COVID-19 大流行期间和之后使用 MTurk 作为 ED 数据收集替代方案的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验