Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark.
Department of Psychiatry, University of Helsinki, Finland.
Neuroimage. 2021 Jun;233:117954. doi: 10.1016/j.neuroimage.2021.117954. Epub 2021 Mar 11.
Predicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of prediction error responses originating from the inferior frontal gyrus, superior and middle temporal cortices in heterozygous genotype carriers (Val/Met) vs homozygous (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study shows how the neural mechanisms underlying optimal deviant detection vary according to the gene-determined cathecolamine levels in the brain.
预测不断变化环境中的事件是感觉系统生理学的基本生存功能,其效率在人群中有所不同。尽管已经确定这种变化的主要来源是遗传遗产,但没有研究追踪听觉预测过程到基因突变。因此,我们使用脑磁图(MEG)检查了 108 名携带不同单核苷酸多态性(SNP)变体的健康参与者的神经生理反应,该变体位于儿茶酚-O-甲基转移酶(COMT)基因内,负责前额叶皮质中儿茶酚胺的大部分降解。我们的结果显示,在杂合基因型携带者(Val/Met)与纯合基因型携带者(Val/Val 和 Met/Met)相比,来自下额前回、上颞和中颞皮质的预测误差反应的振幅增强。这项研究将神经生理学和遗传学相结合,表明了大脑中基因决定的儿茶酚胺水平如何影响最佳偏差检测的神经机制。