Suppr超能文献

旋律识别的全脑时空活动和功能连接。

Spatiotemporal whole-brain activity and functional connectivity of melodies recognition.

机构信息

Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, 8000 Aarhus/Aalborg, Denmark.

Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX39BX Oxford, United Kingdom.

出版信息

Cereb Cortex. 2024 Aug 1;34(8). doi: 10.1093/cercor/bhae320.

Abstract

Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.

摘要

音乐是一种非言语的人类语言,建立在逻辑和层次结构之上,为探索大脑如何处理复杂的时空听觉序列提供了极好的机会。我们利用脑磁图的高时间分辨率,研究了 70 名参与者在识别先前记忆的音乐序列与在熵和信息量方面相匹配的新序列时大脑活动的展开情况。整体脑活动和功能连接性的测量结果揭示了一个广泛的大脑网络,该网络是记忆中听觉序列识别的基础,包括初级听觉皮层、颞上回、脑岛、额下回、扣带回、眶额皮层、基底神经节、丘脑和海马体。此外,虽然听觉皮层主要对序列的前几个音做出反应,但在识别记忆和新音乐序列时,扣带回、额下回、海马体和眶额皮层等高级脑区的活动随着时间的推移而大大增加。总之,我们的研究使用了从解码到功能连接的广泛分析技术,并借鉴了以前的工作,为有意识地识别听觉序列的时空全脑机制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc8/11304985/f535d423f759/bhae320f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验