King Meredith C, Staicu Ana-Maria, Davis Jerry M, Reich Brian J, Eder Brian
Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695.
Department of Marine, Earth & Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695.
Atmos Environ (1994). 2018 Jul;184:233-243. doi: 10.1016/j.atmosenv.2018.04.001. Epub 2018 Apr 7.
In this paper we illustrate the application of modern functional data analysis methods to study the spatiotemporal variability of particulate matter components across the United States. The approach models the pollutant annual profiles in a way that describes the dynamic behavior over time and space. This new technique allows us to predict yearly profiles for locations and years at which data are not available and also offers dimension reduction for easier visualization of the data. Additionally it allows us to study changes of pollutant levels annually or for a particular season. We apply our method to daily concentrations of two particular components of PM measured by two networks of monitoring sites across the United States from 2003 to 2015. Our analysis confirms existing findings and additionally reveals new trends in the change of the pollutants across seasons and years that may not be as easily determined from other common approaches such as Kriging.
在本文中,我们阐述了现代功能数据分析方法在研究美国颗粒物成分时空变异性方面的应用。该方法以描述时间和空间动态行为的方式对污染物年度概况进行建模。这项新技术使我们能够预测数据不可用的地点和年份的年度概况,还能实现降维以便更轻松地可视化数据。此外,它使我们能够研究污染物水平的年度变化或特定季节的变化。我们将我们的方法应用于2003年至2015年期间美国两个监测站点网络测量的两种特定PM成分的每日浓度。我们的分析证实了现有发现,并额外揭示了污染物在季节和年份变化中的新趋势,而这些趋势可能无法通过克里金法等其他常见方法轻易确定。