Xia Yun, Dong Minghua, Yu Lei, Kong Lingdong, Seviour Robert, Kong Yunhong
School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China.
Microbiology Department, La Trobe University, Bundoora, Victoria, Australia.
PeerJ. 2021 Mar 4;9:e10844. doi: 10.7717/peerj.10844. eCollection 2021.
The rhizosphere soil microbiome (RSM) plays an important role in the nutritional metabolism of the exotic weed . However, our understanding of the composition and metabolic activity of this microbiome is limited. We used high-throughput sequencing of bacterial 16S rRNA genes and fungal internal transcribed spacer fragments in combination with transcriptome analysis to compare the composition and metabolic features of the RSMs of and the native plant species and . cohabitates with the weed and grows in uninvaded soil areas. We found fungi belonging to the phyla Ascomycota and Basidiomycota and bacteria belonging to the phyla Proteobacteria, Acidobacteria and Bacteroidetes were highly abundant in the RSMs of and both native plant species. The RSM of differed to varying degrees in the relative abundances of bacterial and fungal phyla and genera, and in levels of expression of functional genes from those of both the native species. The RSM of was more metabolically active than both of these, as indicated by marked increases in the expression levels of genes associated with cell wall, membrane, and envelope biogenesis, energy production and conversion, and the transport and metabolism of carbohydrates, amino acids, coenzymes, nucleotides, and secondary metabolites. Ascomycota and Basidiomycota contributed most significantly to these differences. The composition and metabolic activities of RSM differed less to the RSM of than to the RSM of . Fungal communities contributed most to the metabolic genes in the RSM of These included the arbuscular mycorrhizal fungi Glomeromycota. The different relative abundances in the RSMs of these three plant populations may explain why is more successful in colonizing soils than the two native populations.
根际土壤微生物群(RSM)在这种外来杂草的营养代谢中起着重要作用。然而,我们对这种微生物群的组成和代谢活性的了解有限。我们结合转录组分析,使用细菌16S rRNA基因和真菌内部转录间隔区片段的高通量测序,比较了外来杂草以及本地植物物种[具体植物名称1]和[具体植物名称2]的根际土壤微生物群的组成和代谢特征。[具体植物名称1]与杂草共生,[具体植物名称2]生长在未被入侵的土壤区域。我们发现,子囊菌门和担子菌门的真菌以及变形菌门、酸杆菌门和拟杆菌门的细菌在[具体植物名称1]和这两种本地植物物种的根际土壤微生物群中含量都很高。[具体植物名称1]的根际土壤微生物群在细菌和真菌门及属的相对丰度以及功能基因的表达水平上与这两种本地物种的根际土壤微生物群存在不同程度的差异。[具体植物名称1]的根际土壤微生物群比这两种本地植物物种的根际土壤微生物群代谢活性更高,这表现为与细胞壁、细胞膜和包膜生物合成、能量产生和转化以及碳水化合物、氨基酸、辅酶、核苷酸和次生代谢物的运输和代谢相关的基因表达水平显著增加。子囊菌门和担子菌门对这些差异的贡献最为显著。[具体植物名称1]的根际土壤微生物群的组成和代谢活性与[具体植物名称2]的根际土壤微生物群的差异小于与[具体植物名称3]的根际土壤微生物群的差异。真菌群落对[具体植物名称2]的根际土壤微生物群中的代谢基因贡献最大。这些真菌包括丛枝菌根真菌球囊菌门。这三个植物种群的根际土壤微生物群中不同的相对丰度可能解释了为什么[具体植物名称1]比这两个本地种群更成功地在土壤中定殖。