Guo Jianing, Li Bingjie, Zhang Qiyu, Liu Qingtao, Wang Zelin, Zhao Yufei, Shui Jianglan, Xiang Zhonghua
Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 P. R. China.
Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University Shijiazhuang Hebei Province 050024 P. R. China.
Adv Sci (Weinh). 2021 Jan 29;8(5):2002249. doi: 10.1002/advs.202002249. eCollection 2021 Mar.
Atomically dispersed transition metal-N sites have emerged as a frontier for electrocatalysis because of the maximized atom utilization. However, there is still the problem that the reactant is difficult to reach active sites inside the catalytic layer in the practical proton exchange membrane fuel cell (PEMFC) testing, resulting in the ineffective utilization of the deeply hided active sites. In the device manner, the favorite structure of electrocatalysts for good mass transfer is vital for PEMFC. Herein, a facile one-step approach to synthesize atomically dispersed Fe-N species on hierarchically porous carbon nanostructures as a high-efficient and stable atomically dispersed catalyst for oxygen reduction in acidic media is reported, which is achieved by a predesigned hierarchical covalent organic polymer (COP) with iron anchored. COP materials with well-defined building blocks can stabilize the dopants and provide efficient mass transport. The appropriate hierarchical pore structure is proved to facilitate the mass transport of reactants to the active sites, ensuring the utilization of active sites in devices. Particularly, the structurally optimized HSAC/Fe-3 displays a maximum power density of up to 824 mW cm, higher than other samples with fewer mesopores. Accordingly, this work will offer inspirations for designing efficient atomically dispersed electrocatalyst in PEMFC device.
由于原子利用率最大化,原子分散的过渡金属 - N 位点已成为电催化领域的前沿研究方向。然而,在实际的质子交换膜燃料电池(PEMFC)测试中,仍存在反应物难以到达催化层内部活性位点的问题,导致深藏的活性位点无法有效利用。在器件层面,具有良好传质性能的电催化剂的理想结构对 PEMFC 至关重要。在此,报道了一种简便的一步法,可在分级多孔碳纳米结构上合成原子分散的 Fe - N 物种,作为酸性介质中氧还原的高效稳定原子分散催化剂,这是通过一种预先设计的锚定铁的分级共价有机聚合物(COP)实现的。具有明确结构单元的 COP 材料能够稳定掺杂剂并提供高效的传质。事实证明,合适的分级孔结构有助于反应物向活性位点的传质,确保器件中活性位点的利用。特别是,结构优化的 HSAC/Fe - 3 显示出高达 824 mW cm 的最大功率密度,高于其他中孔较少的样品。因此,这项工作将为设计 PEMFC 器件中的高效原子分散电催化剂提供启示。