Department of Chemistry, Tsinghua University, Beijing 100084, China.
Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12692-12697. doi: 10.1073/pnas.1813605115. Epub 2018 Nov 28.
Exploring efficient and cost-effective catalysts to replace precious metal catalysts, such as Pt, for electrocatalytic oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) holds great promise for renewable energy technologies. Herein, we prepare a type of Co catalyst with single-atomic Co sites embedded in hierarchically ordered porous -doped carbon (Co-SAS/HOPNC) through a facile dual-template cooperative pyrolysis approach. The desirable combination of highly dispersed isolated atomic Co-N active sites, large surface area, high porosity, and good conductivity gives rise to an excellent catalytic performance. The catalyst exhibits outstanding performance for ORR in alkaline medium with a half-wave potential () of 0.892 V, which is 53 mV more positive than that of Pt/C, as well as a high tolerance of methanol and great stability. The catalyst also shows a remarkable catalytic performance for HER with distinctly high turnover frequencies of 0.41 and 3.8 s at an overpotential of 100 and 200 mV, respectively, together with a long-term durability in acidic condition. Experiments and density functional theory (DFT) calculations reveal that the atomically isolated single Co sites and the structural advantages of the unique 3D hierarchical porous architecture synergistically contribute to the high catalytic activity.
探索高效且经济的催化剂来替代如 Pt 等贵金属催化剂,对于电化学氧气还原反应 (ORR) 和析氢反应 (HER) 等可再生能源技术具有重要意义。在此,我们通过简便的双模板协同热解方法制备了一种具有原子级分散 Co 单原子位嵌入有序介孔 N、P 共掺杂碳(Co-SAS/HOPNC)的 Co 催化剂。高度分散的孤立原子 Co-N 活性位、大比表面积、高孔隙率和良好导电性的理想结合,赋予了其优异的催化性能。该催化剂在碱性介质中对 ORR 表现出卓越的性能,半波电位 () 为 0.892 V,比 Pt/C 正 53 mV,对甲醇具有高耐受性和良好的稳定性。该催化剂在 HER 中也表现出显著的催化性能,在 100 和 200 mV 的过电势下,其相应的 turnover frequency 分别高达 0.41 和 3.8 s,且在酸性条件下具有长期稳定性。实验和密度泛函理论 (DFT) 计算表明,原子级分散的孤立 Co 位点和独特的 3D 分级多孔结构的结构优势协同作用,提高了其催化活性。