Kilinc Devrim, Vreulx Anaïs-Camille, Mendes Tiago, Flaig Amandine, Marques-Coelho Diego, Verschoore Maxime, Demiautte Florie, Amouyel Philippe, Eysert Fanny, Dourlen Pierre, Chapuis Julien, Costa Marcos R, Malmanche Nicolas, Checler Frédéric, Lambert Jean-Charles
Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, Lille 59019, France.
Brain Institute, Federal University of Rio Grande do Norte, Natal 59056-450, Brazil.
Brain Commun. 2020 Aug 28;2(2):fcaa139. doi: 10.1093/braincomms/fcaa139. eCollection 2020.
Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid β peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid β molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid β suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid β-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.
近期对全基因组关联研究的荟萃分析确定了阿尔茨海默病的一些遗传风险因素;然而,对于它们促成病理过程的机制却知之甚少。由于在阿尔茨海默病的最早阶段就观察到突触丢失,因此解读阿尔茨海默病风险基因对突触形成和维持的影响备受关注。在本文中,我们报告了一种微流控共培养装置,该装置可将突触与突触前和突触后神经元物理隔离,并使其长期暴露于由过表达野生型或突变型(V717I)淀粉样前体蛋白的模型细胞系分泌的有毒淀粉样β肽中。与过表达突变型淀粉样前体蛋白的细胞共培养,使原代海马神经元的突触暴露于纳摩尔浓度的淀粉样β分子中,并导致突触连接性显著降低,突触后小点与突触前小点基于距离的配对证明了这一点。用针对不同形式淀粉样β的抗体处理细胞表明,低分子量寡聚体可能是罪魁祸首。作为概念验证,我们证明,蛋白酪氨酸激酶2β(一种参与突触可塑性且在阿尔茨海默病大脑中基因表达和蛋白质水平均显示下降的阿尔茨海默病遗传风险因素)在突触后神经元中的选择性过表达可保护细胞免受淀粉样β诱导的突触毒性。总之,我们的芯片实验室装置提供了一个与阿尔茨海默病相关突触毒性生理相关的模型,非常适合评估风险基因在突触前和突触后区室中的影响。