Bialas David, Kirchner Eva, Röhr Merle I S, Würthner Frank
Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany.
Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
J Am Chem Soc. 2021 Mar 31;143(12):4500-4518. doi: 10.1021/jacs.0c13245. Epub 2021 Mar 15.
The past 20 years have witnessed a renaissance of dye chemistry, moving from traditional colorant research toward functional materials. Different from traditional colorant research, the properties of functional materials are governed extensively by intermolecular interactions, thereby entailing significant limitations to the classical approach based on molecular structure-molecular property (color, emission, redox properties, etc.) relationships for the respective dye molecules. However, as discussed in this Perspective, such an approach can be pursued for dye aggregates, and in many cases already well-tailored dimers are sufficient to understand the influence of supramolecular organization on the functional properties of ground and photoexcited states. Illustrative examples will be given for exciton coupling and charge-transfer coupling and how these properties relate to desirable functions such as fluorescence, symmetry-breaking charge separation, and singlet fission in molecular aggregates. While the progress in this research so far mostly originated from studies on well-defined folded and self-assembled structures composed of only two dye molecules, future work will have to advance toward larger oligomers of specific size and geometry. Furthermore, future experimental studies should be guided to a larger extent by theoretical predictions that may be supported by machine learning algorithms and new concepts from artificial intelligence. Beyond already pursued calculations of potential energy landscapes, we suggest the development of theoretical approaches that identify the most desirable dye aggregate structures for a particular property on functional energy landscapes.
在过去的20年里,染料化学经历了复兴,从传统的着色剂研究转向功能材料研究。与传统的着色剂研究不同,功能材料的性质在很大程度上受分子间相互作用的支配,因此对于基于单个染料分子的分子结构-分子性质(颜色、发射、氧化还原性质等)关系的经典方法带来了显著限制。然而,正如本综述中所讨论的,这种方法可以用于染料聚集体,而且在许多情况下,精心设计的二聚体就足以理解超分子组织对基态和光激发态功能性质的影响。将给出激子耦合和电荷转移耦合的示例,以及这些性质如何与分子聚集体中诸如荧光、对称破缺电荷分离和单线态裂变等理想功能相关联。虽然到目前为止这项研究的进展大多源于对仅由两个染料分子组成的明确折叠和自组装结构的研究,但未来的工作将不得不朝着特定尺寸和几何形状的更大寡聚体发展。此外,未来的实验研究在更大程度上应以理论预测为指导,这些预测可能得到机器学习算法和人工智能新概念的支持。除了已经进行的势能面计算之外,我们建议开发理论方法,以在功能能量面上确定具有特定性质的最理想染料聚集体结构。