IMPMC, UMR 7590, Sorbonne Université, MNHN, CNRS, 75005 Paris, France.
J Phys Chem Lett. 2021 Mar 18;12(10):2630-2637. doi: 10.1021/acs.jpclett.1c00194. Epub 2021 Mar 10.
The amino acids synthesis from elementary precursors in abiotic conditions is traditionally described according to the Strecker reaction, thoroughly invoked to justify the observation of amino acids in extraterrestrial samples and their emergence in the primordial Earth. To this day, however, a quantitative microscopic description of the mechanism, thermodynamics, and kinetics of the multistep Strecker reaction is still lacking. In the present work we tackle this study by adopting a state-of-the-art computational approach, combining an efficient scheme of exploration of the relevant chemical networks with a rigorous determination of the underlying free energy and transition states. We determine the step-by-step chemical pathway from "Strecker precursors" to glycine in solution and calculate the corresponding full free energy landscape. Our results agree well with the scarce available experimental data and complete them, thus providing the first end-to-end study of this complex reaction, a crucial bottleneck for the emergence of life.
非生物条件下从基本前体合成氨基酸传统上是根据斯特雷克反应来描述的,该反应被广泛用于解释在地球以外的样本中发现氨基酸以及它们在原始地球上的出现。然而,至今仍缺乏对斯特雷克多步反应的机制、热力学和动力学的定量微观描述。在本工作中,我们通过采用最先进的计算方法来解决这一研究,该方法结合了一种有效的探索相关化学网络的方案,以及对潜在自由能和过渡态的严格确定。我们确定了从“斯特雷克前体”到溶液中甘氨酸的逐步化学途径,并计算了相应的全自由能景观。我们的结果与稀缺的可用实验数据吻合良好,并对其进行了补充,从而提供了对这一复杂反应的第一个端到端研究,这是生命出现的一个关键瓶颈。