Suppr超能文献

结合机器学习方法和精确增强采样方法研究溶液中的前生物化学反应。

Combining Machine Learning Approaches and Accurate Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution.

机构信息

UMR CNRS 7590, Muséum National d' Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75252 Paris, France.

出版信息

J Chem Theory Comput. 2022 Sep 13;18(9):5410-5421. doi: 10.1021/acs.jctc.2c00400. Epub 2022 Aug 5.

Abstract

The study of the thermodynamics, kinetics, and microscopic mechanisms of chemical reactions in solution requires the use of advanced free-energy methods for predictions to be quantitative. This task is however a formidable one for atomistic simulation methods, as the cost of quantum-based approaches, to obtain statistically meaningful samplings of the relevant chemical spaces and networks, becomes exceedingly heavy. In this work, we critically assess the optimal structure and minimal size of an training set able to lead to accurate free-energy profiles sampled with neural network potentials. The results allow one to propose an protocol where the inclusion of a machine-learning (ML)-based task can significantly increase the computational efficiency, while keeping the accuracy and, at the same time, avoiding some of the notorious extrapolation risks in typical atomistic ML approaches. We focus on two representative, and computationally challenging, reaction steps of the classic Strecker-cyanohydrin mechanism for glycine synthesis in water solution, where the main precursors are formaldehyde and hydrogen cyanide. We demonstrate that indistinguishable quality results are obtained, thanks to the ML subprotocol, at about 1 order of magnitude less of computational load.

摘要

研究溶液中化学反应的热力学、动力学和微观机制需要使用先进的自由能方法进行预测,才能达到定量的效果。然而,对于原子模拟方法来说,这是一项艰巨的任务,因为基于量子的方法的成本很高,无法在相关的化学空间和网络中获得具有统计学意义的采样。在这项工作中,我们批判性地评估了能够导致用神经网络势进行准确自由能采样的最佳训练集结构和最小尺寸。结果表明,可以提出一种方案,其中包含基于机器学习(ML)的任务可以显著提高计算效率,同时保持准确性,并且避免了典型原子 ML 方法中的一些明显外推风险。我们关注经典 Strecker-cyanohydrin 机制中甘氨酸合成在水溶液中的两个有代表性的、具有计算挑战性的反应步骤,其中主要的前体是甲醛和氢氰酸。我们证明,由于 ML 子协议的存在,可以在计算负担减少约 1 个数量级的情况下获得可比拟的高质量结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验