Suppr超能文献

人工智能与人类在城市卫生系统中对糖尿病视网膜图像的解读比较。

A Comparison of Artificial Intelligence and Human Diabetic Retinal Image Interpretation in an Urban Health System.

机构信息

Department of Ophthalmology, Lewis Katz School of Medicine, Philadelphia, PA, USA.

出版信息

J Diabetes Sci Technol. 2022 Jul;16(4):1003-1007. doi: 10.1177/1932296821999370. Epub 2021 Mar 10.

Abstract

INTRODUCTION

Artificial intelligence (AI) diabetic retinopathy (DR) software has the potential to decrease time spent by clinicians on image interpretation and expand the scope of DR screening. We performed a retrospective review to compare Eyenuk's EyeArt software (Woodland Hills, CA) to Temple Ophthalmology optometry grading using the International Classification of Diabetic Retinopathy scale.

METHODS

Two hundred and sixty consecutive diabetic patients from the Temple Faculty Practice Internal Medicine clinic underwent 2-field retinal imaging. Classifications of the images by the software and optometrist were analyzed using sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and McNemar's test. Ungradable images were analyzed to identify relationships with HbA1c, age, and ethnicity. Disagreements and a sample of 20% of agreements were adjudicated by a retina specialist.

RESULTS

On patient level comparison, sensitivity for the software was 100%, while specificity was 77.78%. PPV was 19.15%, and NPV was 100%. The 38 disagreements between software and optometrist occurred when the optometrist classified a patient's images as non-referable while the software classified them as referable. Of these disagreements, a retina specialist agreed with the optometrist 57.9% the time (22/38). Of the agreements, the retina specialist agreed with both the program and the optometrist 96.7% of the time (28/29). There was a significant difference in numbers of ungradable photos in older patients (≥60) vs younger patients (<60) (p=0.003).

CONCLUSIONS

The AI program showed high sensitivity with acceptable specificity for a screening algorithm. The high NPV indicates that the software is unlikely to miss DR but may refer patients unnecessarily.

摘要

简介

人工智能(AI)糖尿病视网膜病变(DR)软件有可能减少临床医生在图像解释上花费的时间,并扩大 DR 筛查的范围。我们进行了一项回顾性研究,比较了 Eyenuk 的 EyeArt 软件(加利福尼亚州伍德兰山)和 Temple 眼科验光分级使用国际糖尿病视网膜病变分类。

方法

来自 Temple 内科诊所的 260 名连续糖尿病患者接受了 2 视野视网膜成像。使用灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和 McNemar 检验分析软件和验光师对图像的分类。分析无法分级的图像与 HbA1c、年龄和种族的关系。对分歧和 20%的协议样本进行了一位视网膜专家的裁决。

结果

在患者水平比较中,软件的灵敏度为 100%,特异性为 77.78%。PPV 为 19.15%,NPV 为 100%。软件和验光师之间的 38 次分歧发生在验光师将患者的图像分类为非转诊,而软件将其分类为转诊时。在这些分歧中,视网膜专家 57.9%(22/38)次与验光师意见一致。在协议中,视网膜专家 96.7%(28/29)次与程序和验光师意见一致。年龄较大(≥60 岁)的患者与年龄较小(<60 岁)的患者相比,无法分级照片的数量有显著差异(p=0.003)。

结论

该 AI 程序对于筛选算法显示出较高的灵敏度和可接受的特异性。高 NPV 表明该软件不太可能漏诊 DR,但可能会不必要地转诊患者。

相似文献

引用本文的文献

5
Therapies for Geographic Atrophy.地理萎缩治疗方法。
Int Ophthalmol Clin. 2024 Jan 1;64(1):5-20. doi: 10.1097/IIO.0000000000000515. Epub 2023 Dec 26.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验