Suppr超能文献

基于人工智能的智能手机眼底摄影糖尿病视网膜病变自动检测。

Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.

机构信息

Dr. Mohan's Diabetes Specialities Centre & Madras Diabetes Research Foundation, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, IDF Centre of Excellence in Diabetes Care & ICMR Centre for Advanced Research on Diabetes, Chennai, Tamil Nadu, India.

出版信息

Eye (Lond). 2018 Jun;32(6):1138-1144. doi: 10.1038/s41433-018-0064-9. Epub 2018 Mar 9.

Abstract

OBJECTIVES

To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist's grading.

METHODS

Three hundred and one patients with type 2 diabetes underwent retinal photography with Remidio 'Fundus on phone' (FOP), a smartphone-based device, at a tertiary care diabetes centre in India. Grading of DR was performed by the ophthalmologists using International Clinical DR (ICDR) classification scale. STDR was defined by the presence of severe non-proliferative DR, proliferative DR or diabetic macular oedema (DME). The retinal photographs were graded using a validated AI DR screening software (EyeArt) designed to identify DR, referable DR (moderate non-proliferative DR or worse and/or DME) or STDR. The sensitivity and specificity of automated grading were assessed and validated against the ophthalmologists' grading.

RESULTS

Retinal images of 296 patients were graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) patients, respectively. The AI software showed 95.8% (95% CI 92.9-98.7) sensitivity and 80.2% (95% CI 72.6-87.8) specificity for detecting any DR and 99.1% (95% CI 95.1-99.9) sensitivity and 80.4% (95% CI 73.9-85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 (p < 0.001) and k = 0.75 (p < 0.001), respectively.

CONCLUSIONS

Automated AI analysis of FOP smartphone retinal imaging has very high sensitivity for detecting DR and STDR and thus can be an initial tool for mass retinal screening in people with diabetes.

摘要

目的

评估基于人工智能(AI)的自动软件在使用基于智能手机的设备拍摄眼底摄影时检测糖尿病视网膜病变(DR)和威胁视力的 DR(STDR)的作用,并将其与眼科医生的分级进行验证。

方法

301 例 2 型糖尿病患者在印度一家三级保健糖尿病中心接受 Remidio 'Fundus on phone'(FOP)智能手机设备的视网膜摄影。使用国际临床 DR(ICDR)分类量表由眼科医生对 DR 进行分级。STDR 的定义为存在严重非增殖性 DR、增殖性 DR 或糖尿病性黄斑水肿(DME)。使用经过验证的 AI DR 筛查软件(EyeArt)对视网膜照片进行分级,该软件旨在识别 DR、可转诊 DR(中度非增殖性 DR 或更差和/或 DME)或 STDR。评估并验证自动分级的敏感性和特异性与眼科医生的分级相对应。

结果

对 296 例患者的视网膜图像进行了分级。眼科医生在 191 例(64.5%)和 AI 软件在 203 例(68.6%)患者中检测到 DR,而分别在 112 例(37.8%)和 146 例(49.3%)患者中检测到 STDR。AI 软件对任何 DR 的检测敏感性为 95.8%(95%CI 92.9-98.7),特异性为 80.2%(95%CI 72.6-87.8),对 STDR 的检测敏感性为 99.1%(95%CI 95.1-99.9),特异性为 80.4%(95%CI 73.9-85.9),kappa 一致性分别为 k=0.78(p<0.001)和 k=0.75(p<0.001)。

结论

基于人工智能的 FOP 智能手机视网膜成像自动分析对检测 DR 和 STDR 具有非常高的敏感性,因此可以作为糖尿病患者大规模视网膜筛查的初始工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08e/5997766/04e891ec16b4/41433_2018_64_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验