Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands.
Department of Rheumatology and Clinical Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands.
Scand J Rheumatol. 2021 Jul;50(4):290-294. doi: 10.1080/03009742.2020.1852442. Epub 2021 Mar 15.
: In view of global ageing and the scarcity of knowledge about disease determinants in older individuals with rheumatoid arthritis (RA), an algorithm with optimal diagnostic accuracy was developed to identify RA patients in the Longitudinal Ageing Study Amsterdam (LASA).: Four case ascertainment algorithms were constructed and assessed for validity in LASA, an ongoing cohort study (≥ 55 years) representing the general older population of the Netherlands. Data sources used to identify the diagnosis RA were: self-reported morbidity, specialist diagnosis, and medication. A validation subsample of LASA participants was taken to verify RA diagnosis by a standard procedure using a checklist.: Data from 272/300 (91%) participants were verified. Four algorithms were developed: 'treatment', 'diagnosis', 'treatment or diagnosis', and 'treatment and diagnosis'. The algorithm 'treatment and diagnosis' showed the best measurement properties: specificity 100%, positive predictive value 100%, and area under the receiver operating characteristics curve 0.72. Applying this algorithm in the LASA sample (mean age 71 years) revealed a prevalence of RA of 1.0% (19/1908 participants).: An algorithm for RA identification in the LASA population was developed, with high diagnostic accuracy. It provides an accurate tool to identify older adults with RA in LASA and, after validation, may be applicable in other large population-based studies.
鉴于全球人口老龄化以及类风湿关节炎(RA)老年患者疾病决定因素知识的匮乏,我们开发了一种具有最佳诊断准确性的算法,以识别阿姆斯特丹纵向老龄化研究(LASA)中的 RA 患者。
我们构建了四个病例确定算法,并在 LASA 中评估了其有效性,LASA 是一项正在进行的队列研究(≥55 岁),代表了荷兰一般老年人群。用于确定 RA 诊断的数据源为:自我报告的发病率、专家诊断和药物治疗。从 LASA 参与者中抽取验证子样本,通过使用清单的标准程序来验证 RA 诊断。
来自 272/300(91%)名参与者的数据得到了验证。我们开发了四个算法:“治疗”、“诊断”、“治疗或诊断”和“治疗和诊断”。算法“治疗和诊断”显示出最佳的测量特性:特异性 100%,阳性预测值 100%,接收器操作特性曲线下面积为 0.72。在 LASA 样本(平均年龄 71 岁)中应用该算法,RA 的患病率为 1.0%(19/1908 名参与者)。
我们开发了一种用于 LASA 人群 RA 识别的算法,具有较高的诊断准确性。它为在 LASA 中识别老年 RA 患者提供了一种准确的工具,并且经过验证后,可能适用于其他大型基于人群的研究。