Wang Luming, Wu Song, Zhang Zejuan, Zhu Jiankai, Zou Luwei, Xu Bo, Wu Jiaqi, Zhu Junzhi, Xiao Fei, Jiao Chenyin, Pei Shenghai, Qin Jiaze, Zhou Yu, Xia Juan, Wang Zenghui
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
School of Physics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China.
Natl Sci Rev. 2024 Jul 17;11(10):nwae248. doi: 10.1093/nsr/nwae248. eCollection 2024 Oct.
Two-dimensional (2D) non-layered materials in many aspects differ from their layered counterparts, and the exploration of their physical properties has produced many intriguing findings. However, due to challenges in applying existing experimental techniques to such nanoscale samples, their thermal properties have remained largely uncharacterized, hindering further exploration and device application using this promising material system. Here, we demonstrate an experimental study of thermal conduction in -InS, a typical non-layered 2D material, using a resonant nanoelectromechanical systems (NEMS) platform. We devise a new two-degrees-of-freedom technique, more responsive and sensitive than Raman spectroscopy, to simultaneously determine both the thermal conductivity to be 3.7 W m K and its interfacial thermal conductance with SiO as 6.4 MW m K. Leveraging such unique thermal properties, we further demonstrate a record-high power-to-frequency responsivity of -447 ppm/μW in -InS NEMS sensors, the best among drumhead NEMS-based bolometers. Our findings offer an effective approach for studying thermal properties and exploring potential thermal applications of 2D non-layered materials.
二维(2D)非层状材料在许多方面与其层状对应物不同,对其物理性质的探索产生了许多有趣的发现。然而,由于将现有实验技术应用于此类纳米级样品存在挑战,它们的热性质在很大程度上仍未得到表征,这阻碍了使用这种有前景的材料系统进行进一步的探索和器件应用。在这里,我们展示了一项对典型的非层状二维材料-InS中的热传导进行的实验研究,该研究使用了共振纳米机电系统(NEMS)平台。我们设计了一种新的两自由度技术,它比拉曼光谱更灵敏且响应更快,能够同时确定其热导率为3.7 W m⁻¹K,以及它与SiO₂的界面热导为6.4 MW m⁻²K。利用这种独特的热性质,我们进一步展示了-InS NEMS传感器中创纪录的-447 ppm/μW的功率-频率响应率,这在基于鼓膜式NEMS的测辐射热计中是最佳的。我们的发现为研究二维非层状材料的热性质和探索其潜在的热应用提供了一种有效的方法。