University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands.
University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands; Martini Hospital Groningen, Department of Radiology, Groningen, the Netherlands.
Eur J Radiol. 2021 May;138:109646. doi: 10.1016/j.ejrad.2021.109646. Epub 2021 Mar 10.
Phantom studies in CT emphysema quantification show that iterative reconstruction and deep learning-based noise reduction (DLNR) allow lower radiation dose. We compared emphysema quantification on ultra-low-dose CT (ULDCT) with and without noise reduction, to standard-dose CT (SDCT) in chronic obstructive pulmonary disease (COPD).
Forty-nine COPD patients underwent ULDCT (third generation dual-source CT; 70ref-mAs, Sn-filter 100kVp; median CTDIvol 0.38 mGy) and SDCT (64-multidetector CT; 40mAs, 120kVp; CTDIvol 3.04 mGy). Scans were reconstructed with filtered backprojection (FBP) and soft kernel. For ULDCT, we also applied advanced modelled iterative reconstruction (ADMIRE), levels 1/3/5, and DLNR, levels 1/3/5/9. Emphysema was quantified as Low Attenuation Value percentage (LAV%, ≤-950HU). ULDCT measures were compared to SDCT as reference standard.
For ULDCT, the median radiation dose was 84 % lower than for SDCT. Median extent of emphysema was 18.6 % for ULD-FBP and 15.4 % for SDCT (inter-quartile range: 11.8-28.4 % and 9.2 %-28.7 %, p = 0.002). Compared to SDCT, the range in limits of agreement of emphysema quantification as measure of variability was 14.4 for ULD-FBP, 11.0-13.1 for ULD-ADMIRE levels and 10.1-13.9 for ULD-DLNR levels. Optimal settings were ADMIRE 3 and DLNR 3, reducing variability of emphysema quantification by 24 % and 27 %, at slight underestimation of emphysema extent (-1.5 % and -2.9 %, respectively).
Ultra-low-dose CT in COPD patients allows dose reduction by 84 %. State-of-the-art noise reduction methods in ULDCT resulted in slight underestimation of emphysema compared to SDCT. Noise reduction methods (especially ADMIRE 3 and DLNR 3) reduced variability of emphysema quantification in ULDCT by up to 27 % compared to FBP.
CT 肺气肿定量中的体模研究表明,迭代重建和基于深度学习的降噪(DLNR)可降低放射剂量。我们比较了慢性阻塞性肺疾病(COPD)患者超低剂量 CT(ULDCT)和有降噪与无降噪的标准剂量 CT(SDCT)的肺气肿定量。
49 例 COPD 患者接受 ULDCT(第三代双源 CT;70ref-mAs,Sn 滤波器 100kVp;中位 CTDIvol 0.38 mGy)和 SDCT(64 层多排 CT;40mAs,120kVp;CTDIvol 3.04 mGy)。扫描采用滤波反投影(FBP)和软组织重建。对于 ULDCT,我们还应用了高级模型迭代重建(ADMIRE),水平 1/3/5,以及 DLNR,水平 1/3/5/9。肺气肿作为低衰减值百分比(LAV%,≤-950HU)进行定量。将 ULDCT 测量值与 SDCT 作为参考标准进行比较。
对于 ULDCT,其放射剂量中位数比 SDCT 低 84%。ULD-FBP 的中位肺气肿程度为 18.6%,而 SDCT 为 15.4%(四分位距:11.8-28.4%和 9.2%-28.7%,p=0.002)。与 SDCT 相比,作为测量变异性的肺气肿定量的一致性范围的差异为 ULD-FBP 为 14.4,ULD-ADMIRE 水平为 11.0-13.1,ULD-DLNR 水平为 10.1-13.9。最佳设置为 ADMIRE 3 和 DLNR 3,分别使肺气肿定量的变异性降低 24%和 27%,同时低估肺气肿程度(分别为-1.5%和-2.9%)。
COPD 患者的超低剂量 CT 可使剂量减少 84%。在 ULDCT 中,最先进的降噪方法与 SDCT 相比,会略微低估肺气肿程度。与 FBP 相比,降噪方法(尤其是 ADMIRE 3 和 DLNR 3)可将 ULDCT 中肺气肿定量的变异性降低多达 27%。