Suppr超能文献

基于深度学习的图像重建算法在慢性肝病动脉期的超低剂量肝脏多期 CT:一项非劣效性研究。

Ultra-low-dose hepatic multiphase CT using deep learning-based image reconstruction algorithm focused on arterial phase in chronic liver disease: A non-inferiority study.

机构信息

Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.

Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.

出版信息

Eur J Radiol. 2023 Feb;159:110659. doi: 10.1016/j.ejrad.2022.110659. Epub 2022 Dec 20.

Abstract

PURPOSE

This study determined whether image quality and detectability of ultralow-dose hepatic multiphase CT (ULDCT, 33.3% dose) using a vendor-agnostic deep learning model(DLM) are noninferior to those of standard-dose CT (SDCT, 100% dose) using model-based iterative reconstruction(MBIR) in patients with chronic liver disease focusing on arterial phase.

METHODS

Sixty-seven patients underwent hepatic multiphase CT using a dual-source scanner to obtain two different radiation dose CT scans (100%, SDCT and 33.3%, ULDCT). ULDCT using DLM and SDCT using MBIR were compared. A margin of -0.5 for the difference between the two protocols was pre-defined as noninferiority of the overall image quality of the arterial phase image. Quantitative image analysis (signal to noise ratio[SNR] and contrast to noise ratio[CNR]) was also conducted. The detectability of hepatic arterial focal lesions was compared using the Jackknife free-response receiver operating characteristic analysis. Non-inferiority was satisfied if the margin of the lower limit of 95%CI of the difference in figure-of-merit was less than -0.1.

RESULTS

Mean overall arterial phase image quality scores with ULDCT using DLM and SDCT using MBIR were 4.35 ± 0.57 and 4.08 ± 0.58, showing noninferiority (difference: -0.269; 95 %CI, -0.374 to -0.164). ULDCT using DLM showed a significantly superior contrast-to-noise ratio of arterial enhancing lesion (p < 0.05). Figure-of-merit for detectability of arterial hepatic focal lesion was 0.986 for ULDCT using DLM and 0.963 for SDCT using MBIR, showing noninferiority (difference: -0.023, 95 %CI: -0.016 to 0.063).

CONCLUSION

ULDCT using DLM with 66.7% dose reduction showed non-inferior overall image quality and detectability of arterial focal hepatic lesion compared to SDCT using MBIR.

摘要

目的

本研究旨在探讨在慢性肝病患者中,使用基于模型的迭代重建(MBIR)的标准剂量 CT(SDCT,100%剂量)与使用供应商中立深度学习模型(DLM)的超低剂量肝多期 CT(ULDCT,33.3%剂量)相比,动脉期的图像质量和检出率是否具有非劣效性。

方法

67 例患者使用双源扫描仪进行肝多期 CT 检查,获得两种不同辐射剂量 CT 扫描(100%,SDCT 和 33.3%,ULDCT)。比较 ULDCT 采用 DLM 和 SDCT 采用 MBIR 的情况。预定义两种方案之间的差异为 -0.5 作为动脉期图像整体图像质量非劣效性的边界。还进行了定量图像分析(信噪比[SNR]和对比噪声比[CNR])。使用 Jackknife 自由响应接收器操作特性分析比较肝动脉局灶性病变的检出率。如果差异的 95%置信区间下限的图质量指标的下限低于-0.1,则满足非劣效性。

结果

采用 DLM 的 ULDCT 和采用 MBIR 的 SDCT 的平均动脉期整体图像质量评分分别为 4.35±0.57 和 4.08±0.58,显示非劣效性(差异:-0.269;95%CI:-0.374 至-0.164)。采用 DLM 的 ULDCT 显示动脉增强病变的对比噪声比显著更高(p<0.05)。采用 DLM 的 ULDCT 的检出率为 0.986,采用 MBIR 的 SDCT 的检出率为 0.963,显示非劣效性(差异:-0.023,95%CI:-0.016 至 0.063)。

结论

与采用 MBIR 的 SDCT 相比,采用 DLM 进行 66.7%剂量降低的 ULDCT 显示出非劣效的整体图像质量和动脉期肝局灶性病变的检出率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验