Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
Eur J Radiol. 2023 Feb;159:110659. doi: 10.1016/j.ejrad.2022.110659. Epub 2022 Dec 20.
This study determined whether image quality and detectability of ultralow-dose hepatic multiphase CT (ULDCT, 33.3% dose) using a vendor-agnostic deep learning model(DLM) are noninferior to those of standard-dose CT (SDCT, 100% dose) using model-based iterative reconstruction(MBIR) in patients with chronic liver disease focusing on arterial phase.
Sixty-seven patients underwent hepatic multiphase CT using a dual-source scanner to obtain two different radiation dose CT scans (100%, SDCT and 33.3%, ULDCT). ULDCT using DLM and SDCT using MBIR were compared. A margin of -0.5 for the difference between the two protocols was pre-defined as noninferiority of the overall image quality of the arterial phase image. Quantitative image analysis (signal to noise ratio[SNR] and contrast to noise ratio[CNR]) was also conducted. The detectability of hepatic arterial focal lesions was compared using the Jackknife free-response receiver operating characteristic analysis. Non-inferiority was satisfied if the margin of the lower limit of 95%CI of the difference in figure-of-merit was less than -0.1.
Mean overall arterial phase image quality scores with ULDCT using DLM and SDCT using MBIR were 4.35 ± 0.57 and 4.08 ± 0.58, showing noninferiority (difference: -0.269; 95 %CI, -0.374 to -0.164). ULDCT using DLM showed a significantly superior contrast-to-noise ratio of arterial enhancing lesion (p < 0.05). Figure-of-merit for detectability of arterial hepatic focal lesion was 0.986 for ULDCT using DLM and 0.963 for SDCT using MBIR, showing noninferiority (difference: -0.023, 95 %CI: -0.016 to 0.063).
ULDCT using DLM with 66.7% dose reduction showed non-inferior overall image quality and detectability of arterial focal hepatic lesion compared to SDCT using MBIR.
本研究旨在探讨在慢性肝病患者中,使用基于模型的迭代重建(MBIR)的标准剂量 CT(SDCT,100%剂量)与使用供应商中立深度学习模型(DLM)的超低剂量肝多期 CT(ULDCT,33.3%剂量)相比,动脉期的图像质量和检出率是否具有非劣效性。
67 例患者使用双源扫描仪进行肝多期 CT 检查,获得两种不同辐射剂量 CT 扫描(100%,SDCT 和 33.3%,ULDCT)。比较 ULDCT 采用 DLM 和 SDCT 采用 MBIR 的情况。预定义两种方案之间的差异为 -0.5 作为动脉期图像整体图像质量非劣效性的边界。还进行了定量图像分析(信噪比[SNR]和对比噪声比[CNR])。使用 Jackknife 自由响应接收器操作特性分析比较肝动脉局灶性病变的检出率。如果差异的 95%置信区间下限的图质量指标的下限低于-0.1,则满足非劣效性。
采用 DLM 的 ULDCT 和采用 MBIR 的 SDCT 的平均动脉期整体图像质量评分分别为 4.35±0.57 和 4.08±0.58,显示非劣效性(差异:-0.269;95%CI:-0.374 至-0.164)。采用 DLM 的 ULDCT 显示动脉增强病变的对比噪声比显著更高(p<0.05)。采用 DLM 的 ULDCT 的检出率为 0.986,采用 MBIR 的 SDCT 的检出率为 0.963,显示非劣效性(差异:-0.023,95%CI:-0.016 至 0.063)。
与采用 MBIR 的 SDCT 相比,采用 DLM 进行 66.7%剂量降低的 ULDCT 显示出非劣效的整体图像质量和动脉期肝局灶性病变的检出率。