JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, CO 80309.
JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, CO 80309;
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2015728118.
Single-molecule force spectroscopy is a powerful tool for studying protein folding. Over the last decade, a key question has emerged: how are changes in intrinsic biomolecular dynamics altered by attachment to μm-scale force probes via flexible linkers? Here, we studied the folding/unfolding of αD using atomic force microscopy (AFM)-based force spectroscopy. αD offers an unusual opportunity as a prior single-molecule fluorescence resonance energy transfer (smFRET) study showed αD's configurational diffusion constant within the context of Kramers theory varies with pH. The resulting pH dependence provides a test for AFM-based force spectroscopy's ability to track intrinsic changes in protein folding dynamics. Experimentally, however, αD is challenging. It unfolds at low force (<15 pN) and exhibits fast-folding kinetics. We therefore used focused ion beam-modified cantilevers that combine exceptional force precision, stability, and temporal resolution to detect state occupancies as brief as 1 ms. Notably, equilibrium and nonequilibrium force spectroscopy data recapitulated the pH dependence measured using smFRET, despite differences in destabilization mechanism. We reconstructed a one-dimensional free-energy landscape from dynamic data via an inverse Weierstrass transform. At both neutral and low pH, the resulting constant-force landscapes showed minimal differences (∼0.2 to 0.5 ) in transition state height. These landscapes were essentially equal to the predicted entropic barrier and symmetric. In contrast, force-dependent rates showed that the distance to the unfolding transition state increased as pH decreased and thereby contributed to the accelerated kinetics at low pH. More broadly, this precise characterization of a fast-folding, mechanically labile protein enables future AFM-based studies of subtle transitions in mechanoresponsive proteins.
单分子力谱学是研究蛋白质折叠的有力工具。在过去的十年中,出现了一个关键问题:通过柔性接头与μm 尺度的力探针连接如何改变内在生物分子动力学的变化?在这里,我们使用原子力显微镜(AFM)-基于力谱法研究了αD 的折叠/展开。αD 提供了一个特殊的机会,因为之前的单分子荧光共振能量转移(smFRET)研究表明,αD 在 Kramer 理论范围内的构象扩散常数随 pH 值而变化。由此产生的 pH 依赖性提供了一个测试,用于基于 AFM 的力谱法跟踪蛋白质折叠动力学的内在变化。然而,在实验中,αD 具有挑战性。它在低力(<15 pN)下展开,并表现出快速折叠动力学。因此,我们使用聚焦离子束修饰的悬臂梁,该悬臂梁结合了出色的力精度、稳定性和时间分辨率,以检测短至 1 ms 的状态占有率。值得注意的是,尽管失稳机制存在差异,但平衡和非平衡力谱数据再现了使用 smFRET 测量的 pH 依赖性。我们通过逆 Weierstrass 变换从动态数据中重建了一个一维自由能景观。在中性和低 pH 值下,所得的恒力景观在过渡态高度上的差异很小(约 0.2 到 0.5)。这些景观与预测的熵势垒相等且对称。相比之下,依赖于力的速率表明,随着 pH 值的降低,展开过渡态的距离增加,从而导致低 pH 值下的动力学加速。更广泛地说,这种对快速折叠、机械不稳定蛋白质的精确表征为未来基于 AFM 的机械响应蛋白的微妙转变研究铺平了道路。