Suppr超能文献

外力作用下超快折叠蛋白质动力学中的仪器效应。

Instrumental Effects in the Dynamics of an Ultrafast Folding Protein under Mechanical Force.

机构信息

Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC) , P.K. 1072, 20080 Donostia , Spain.

CIC nanoGUNE , 20018 San Sebastián , Spain.

出版信息

J Phys Chem B. 2018 Dec 13;122(49):11147-11154. doi: 10.1021/acs.jpcb.8b05975. Epub 2018 Aug 21.

Abstract

The analysis and interpretation of single molecule force spectroscopy (smFS) experiments is often complicated by hidden effects from the measuring device. Here we investigate these effects in our recent smFS experiments on the ultrafast folding protein gpW, which has been previously shown to fold without crossing a free energy barrier in the absence of force (i.e., downhill folding). Using atomic force microscopy (AFM) smFS experiments, we found that a very small force of ∼5 pN brings gpW near its unfolding midpoint and results in two-state (un)folding patterns that indicate the emergence of a force-induced free energy barrier. The change in the folding regime is concomitant with a 30,000-fold slowdown of the folding and unfolding times, from a few microseconds that it takes gpW to (un)fold at the midpoint temperature to seconds in the AFM. These results are puzzling because the barrier induced by force in the folding free energy landscape of gpW is far too small to account for such a difference in time scales. Here we use recently developed theoretical methods to resolve the origin of the strikingly slow dynamics of gpW under mechanical force. We find that, while the AFM experiments correctly capture the equilibrium distance distribution, the measured dynamics are entirely controlled by the response of the cantilever and polyprotein linker, which is much slower than the protein conformational dynamics. This interpretation is likely applicable to the folding of other small biomolecules in smFS experiments, and becomes particularly important in the case of systems with fast folding dynamics and small free energy barriers, and for instruments with slow response times.

摘要

单分子力谱 (smFS) 实验的分析和解释通常受到测量设备隐藏效应的影响。在这里,我们研究了最近在超快折叠蛋白 gpW 的 smFS 实验中的这些效应,此前的研究表明,在没有力的情况下(即顺行折叠),gpW 不会穿过自由能势垒折叠。使用原子力显微镜 (AFM) smFS 实验,我们发现,一个非常小的力约为 5 pN 可以将 gpW 带到其展开中点,并导致二态(展开)折叠模式,表明出现了力诱导的自由能势垒。折叠状态的变化伴随着折叠和解折叠时间的 30,000 倍减慢,从 gpW 在中点温度下(展开)折叠所需的几微秒到 AFM 中的秒。这些结果令人费解,因为力在 gpW 的折叠自由能景观中诱导的势垒太小,无法解释时间尺度的差异。在这里,我们使用最近开发的理论方法来解决 gpW 在机械力下的惊人缓慢动力学的起源。我们发现,虽然 AFM 实验正确地捕获了平衡距离分布,但测量的动力学完全由悬臂和多蛋白接头的响应控制,其速度远慢于蛋白质构象动力学。这种解释可能适用于 smFS 实验中其他小分子的折叠,对于具有快速折叠动力学和小自由能势垒的系统以及具有慢响应时间的仪器,尤其重要。

相似文献

4
Lessons about Protein Folding and Binding from Archetypal Folds.从原型折叠中了解蛋白质折叠和结合的知识。
Acc Chem Res. 2020 Oct 20;53(10):2180-2188. doi: 10.1021/acs.accounts.0c00322. Epub 2020 Sep 11.

引用本文的文献

3
Molecular Fluctuations as a Ruler of Force-Induced Protein Conformations.分子涨落作为力致蛋白质构象的标尺。
Nano Lett. 2021 Apr 14;21(7):2953-2961. doi: 10.1021/acs.nanolett.1c00051. Epub 2021 Mar 25.

本文引用的文献

3
Transition paths in single-molecule force spectroscopy.单分子力谱中的转变路径。
J Chem Phys. 2018 Mar 28;148(12):123309. doi: 10.1063/1.5004767.
7
Reduction of All-Atom Protein Folding Dynamics to One-Dimensional Diffusion.将全原子蛋白质折叠动力学简化为一维扩散
J Phys Chem B. 2015 Dec 10;119(49):15247-55. doi: 10.1021/acs.jpcb.5b09741. Epub 2015 Nov 25.
8
On artifacts in single-molecule force spectroscopy.关于单分子力谱中的伪迹
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14248-53. doi: 10.1073/pnas.1519633112. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验